生物启发的富羟基电解质添加剂,用于具有强配位化学性质的高可逆水性锌离子电池

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-06-04 DOI:10.1039/d4gc01364f
Jinlong Zhang , Qing Wu , Song Yang , Fusheng Luo , Yue Li , Yanhui Zhang , Kui Chen , Jun Huang , Haibo Xie , Yiwang Chen
{"title":"生物启发的富羟基电解质添加剂,用于具有强配位化学性质的高可逆水性锌离子电池","authors":"Jinlong Zhang ,&nbsp;Qing Wu ,&nbsp;Song Yang ,&nbsp;Fusheng Luo ,&nbsp;Yue Li ,&nbsp;Yanhui Zhang ,&nbsp;Kui Chen ,&nbsp;Jun Huang ,&nbsp;Haibo Xie ,&nbsp;Yiwang Chen","doi":"10.1039/d4gc01364f","DOIUrl":null,"url":null,"abstract":"<div><p>A highly reversible Zn metal anode is the prerequisite for realizing the practical applications of aqueous Zn ion batteries (ZIBs), which are limited by severe zinc dendrites and corrosion. Herein, bio-inspired hydroxyl-rich <span>l</span>-ascorbic acid (vitamin C, <span>l</span>-Aa) was employed to regulate coordination chemistry <em>via</em> the strong interaction between –OH and H<sub>2</sub>O with dual remodeling functions and further improve the reversibility of Zn anodes. Specifically, <span>l</span>-Aa not only reconstructs the Zn<sup>2+</sup> solvation shell, thus reducing Zn<sup>2+</sup> desolvation energy, but also forms a molecular adsorption interface <em>via</em> excellent zincophilicity to improve zinc redox kinetics and suppress Zn anode corrosion. Meanwhile, the molecular adsorption interface facilitates the homogenization of the interfacial electric field, thereby promoting the predominant deposition of Zn(002). Consequently, the Zn//Cu asymmetric cell presents a low overpotential for zinc nucleation and exceptional average coulombic efficiency (CE) of 99.6% over 1200 cycles at a high current density of 20 mA cm<sup>−2</sup>. The Zn//Zn cell also delivers excellent cycling stability for over 1400 h at 5 mA cm<sup>−2</sup>. In addition, the Zn//MnO<sub>2</sub> full cell exhibits a robust long-term cycling performance of 1000 cycles at 1 A g<sup>−1</sup>. This strategy of simultaneously regulating coordination chemistry and further constructing molecular interfaces may boost the applications of highly reversible ZIBs.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired hydroxyl-rich electrolyte additive for highly reversible aqueous Zn-ion batteries with strong coordination chemistry†\",\"authors\":\"Jinlong Zhang ,&nbsp;Qing Wu ,&nbsp;Song Yang ,&nbsp;Fusheng Luo ,&nbsp;Yue Li ,&nbsp;Yanhui Zhang ,&nbsp;Kui Chen ,&nbsp;Jun Huang ,&nbsp;Haibo Xie ,&nbsp;Yiwang Chen\",\"doi\":\"10.1039/d4gc01364f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A highly reversible Zn metal anode is the prerequisite for realizing the practical applications of aqueous Zn ion batteries (ZIBs), which are limited by severe zinc dendrites and corrosion. Herein, bio-inspired hydroxyl-rich <span>l</span>-ascorbic acid (vitamin C, <span>l</span>-Aa) was employed to regulate coordination chemistry <em>via</em> the strong interaction between –OH and H<sub>2</sub>O with dual remodeling functions and further improve the reversibility of Zn anodes. Specifically, <span>l</span>-Aa not only reconstructs the Zn<sup>2+</sup> solvation shell, thus reducing Zn<sup>2+</sup> desolvation energy, but also forms a molecular adsorption interface <em>via</em> excellent zincophilicity to improve zinc redox kinetics and suppress Zn anode corrosion. Meanwhile, the molecular adsorption interface facilitates the homogenization of the interfacial electric field, thereby promoting the predominant deposition of Zn(002). Consequently, the Zn//Cu asymmetric cell presents a low overpotential for zinc nucleation and exceptional average coulombic efficiency (CE) of 99.6% over 1200 cycles at a high current density of 20 mA cm<sup>−2</sup>. The Zn//Zn cell also delivers excellent cycling stability for over 1400 h at 5 mA cm<sup>−2</sup>. In addition, the Zn//MnO<sub>2</sub> full cell exhibits a robust long-term cycling performance of 1000 cycles at 1 A g<sup>−1</sup>. This strategy of simultaneously regulating coordination chemistry and further constructing molecular interfaces may boost the applications of highly reversible ZIBs.</p></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224005193\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224005193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池(ZIB)受到严重的锌枝晶和腐蚀的限制,而高度可逆的锌金属阳极是实现其实际应用的先决条件。本文采用生物启发的富含羟基的左旋抗坏血酸(维生素 C,L-Aa),通过具有双重重塑功能的 -OH 和 H2O 之间的强相互作用来调节配位化学,进一步提高锌阳极的可逆性。具体来说,L-Aa 不仅能重构 Zn2+ 溶壳,从而降低 Zn2+ 解溶能,还能通过优异的亲锌性形成分子吸附界面,改善锌氧化还原动力学,抑制锌阳极腐蚀。同时,分子吸附界面有利于界面电场的均匀化,从而促进 Zn(002) 的主要沉积。因此,锌/铜不对称电池的锌成核过电势较低,在 20 mA cm-2 的高电流密度下,1200 个循环的平均库仑效率 (CE) 达到 99.6%。Zn//Zn 电池在 5 mA cm-2 电流密度下循环超过 1400 小时,也具有出色的循环稳定性。此外,Zn//MnO2 全电池在 1 A g-1 的条件下可长期循环 1000 次,表现出强劲的性能。这种同时调节配位化学和进一步构建分子界面的策略可能会促进高可逆性 ZIB 的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-inspired hydroxyl-rich electrolyte additive for highly reversible aqueous Zn-ion batteries with strong coordination chemistry†

A highly reversible Zn metal anode is the prerequisite for realizing the practical applications of aqueous Zn ion batteries (ZIBs), which are limited by severe zinc dendrites and corrosion. Herein, bio-inspired hydroxyl-rich l-ascorbic acid (vitamin C, l-Aa) was employed to regulate coordination chemistry via the strong interaction between –OH and H2O with dual remodeling functions and further improve the reversibility of Zn anodes. Specifically, l-Aa not only reconstructs the Zn2+ solvation shell, thus reducing Zn2+ desolvation energy, but also forms a molecular adsorption interface via excellent zincophilicity to improve zinc redox kinetics and suppress Zn anode corrosion. Meanwhile, the molecular adsorption interface facilitates the homogenization of the interfacial electric field, thereby promoting the predominant deposition of Zn(002). Consequently, the Zn//Cu asymmetric cell presents a low overpotential for zinc nucleation and exceptional average coulombic efficiency (CE) of 99.6% over 1200 cycles at a high current density of 20 mA cm−2. The Zn//Zn cell also delivers excellent cycling stability for over 1400 h at 5 mA cm−2. In addition, the Zn//MnO2 full cell exhibits a robust long-term cycling performance of 1000 cycles at 1 A g−1. This strategy of simultaneously regulating coordination chemistry and further constructing molecular interfaces may boost the applications of highly reversible ZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Correction: Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol Rational bottom-up synthesis of sulphur-rich porous carbons for single-atomic platinum catalyst supports Balancing computational chemistry's potential with its environmental impact Correction: Metal-free visible-light-induced phosphorylation of unactivated alkyl iodides with white phosphorus as the P-atom source Low-chromophore lignin isolation from natural biomass with polyol-based deep eutectic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1