引用能说明论文的可复制性吗?机器学习论文案例研究

Rochana R. Obadage, Sarah M. Rajtmajer, Jian Wu
{"title":"引用能说明论文的可复制性吗?机器学习论文案例研究","authors":"Rochana R. Obadage, Sarah M. Rajtmajer, Jian Wu","doi":"arxiv-2405.03977","DOIUrl":null,"url":null,"abstract":"The iterative character of work in machine learning (ML) and artificial\nintelligence (AI) and reliance on comparisons against benchmark datasets\nemphasize the importance of reproducibility in that literature. Yet, resource\nconstraints and inadequate documentation can make running replications\nparticularly challenging. Our work explores the potential of using downstream\ncitation contexts as a signal of reproducibility. We introduce a sentiment\nanalysis framework applied to citation contexts from papers involved in Machine\nLearning Reproducibility Challenges in order to interpret the positive or\nnegative outcomes of reproduction attempts. Our contributions include training\nclassifiers for reproducibility-related contexts and sentiment analysis, and\nexploring correlations between citation context sentiment and reproducibility\nscores. Study data, software, and an artifact appendix are publicly available\nat https://github.com/lamps-lab/ccair-ai-reproducibility .","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can citations tell us about a paper's reproducibility? A case study of machine learning papers\",\"authors\":\"Rochana R. Obadage, Sarah M. Rajtmajer, Jian Wu\",\"doi\":\"arxiv-2405.03977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The iterative character of work in machine learning (ML) and artificial\\nintelligence (AI) and reliance on comparisons against benchmark datasets\\nemphasize the importance of reproducibility in that literature. Yet, resource\\nconstraints and inadequate documentation can make running replications\\nparticularly challenging. Our work explores the potential of using downstream\\ncitation contexts as a signal of reproducibility. We introduce a sentiment\\nanalysis framework applied to citation contexts from papers involved in Machine\\nLearning Reproducibility Challenges in order to interpret the positive or\\nnegative outcomes of reproduction attempts. Our contributions include training\\nclassifiers for reproducibility-related contexts and sentiment analysis, and\\nexploring correlations between citation context sentiment and reproducibility\\nscores. Study data, software, and an artifact appendix are publicly available\\nat https://github.com/lamps-lab/ccair-ai-reproducibility .\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)和人工智能(AI)领域的工作具有迭代性,并且依赖于与基准数据集的比较,这就强调了文献可重复性的重要性。然而,资源的限制和文档的不足可能会使复制的运行特别具有挑战性。我们的工作探索了使用下游引用上下文作为可重复性信号的潜力。我们引入了一个情感分析框架,将其应用于机器学习可重复性挑战赛中论文的引用上下文,以解释复制尝试的积极或消极结果。我们的贡献包括训练可重复性相关上下文和情感分析的分类器,以及探索引用上下文情感和可重复性分数之间的相关性。研究数据、软件和工具附录可通过 https://github.com/lamps-lab/ccair-ai-reproducibility 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can citations tell us about a paper's reproducibility? A case study of machine learning papers
The iterative character of work in machine learning (ML) and artificial intelligence (AI) and reliance on comparisons against benchmark datasets emphasize the importance of reproducibility in that literature. Yet, resource constraints and inadequate documentation can make running replications particularly challenging. Our work explores the potential of using downstream citation contexts as a signal of reproducibility. We introduce a sentiment analysis framework applied to citation contexts from papers involved in Machine Learning Reproducibility Challenges in order to interpret the positive or negative outcomes of reproduction attempts. Our contributions include training classifiers for reproducibility-related contexts and sentiment analysis, and exploring correlations between citation context sentiment and reproducibility scores. Study data, software, and an artifact appendix are publicly available at https://github.com/lamps-lab/ccair-ai-reproducibility .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1