有频率纠缠和无频率纠缠的振幅嵌合体和凹凸态:一个玩具模型

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Physics Complexity Pub Date : 2024-05-09 DOI:10.1088/2632-072x/ad4228
A Provata
{"title":"有频率纠缠和无频率纠缠的振幅嵌合体和凹凸态:一个玩具模型","authors":"A Provata","doi":"10.1088/2632-072x/ad4228","DOIUrl":null,"url":null,"abstract":"When chaotic oscillators are coupled in complex networks a number of interesting synchronization phenomena emerge. Notable examples are the frequency and amplitude chimeras, chimera death states, solitary states as well as combinations of these. In a previous study (Provata 2020 <italic toggle=\"yes\">J. Phys. Complex.</italic>\n<bold>1</bold> 025006), a toy model was introduced addressing possible mechanisms behind the formation of frequency chimera states. In the present study a variation of the toy model is proposed to address the formation of amplitude chimeras. The proposed oscillatory model is now equipped with an additional 3rd order equation modulating the amplitude of the network oscillators. This way, the single oscillators are constructed as bistable in amplitude and depending on the initial conditions their amplitude may result in one of the two stable fixed points. Numerical simulations demonstrate that when these oscillators are nonlocally coupled in networks, they organize in domains with alternating amplitudes (related to the two fixed points), naturally forming amplitude chimeras. A second extension of this model incorporates nonlinear terms merging amplitude together with frequency, and this extension allows for the spontaneous production of composite amplitude-and-frequency chimeras occurring simultaneously in the network. Moreover the extended model allows to understand the emergence of bump states via the continuous passage from chimera states, when both fixed point amplitudes are positive, to bump states when one of the two fixed points vanishes. The synchronization properties of the network are studied as a function of the system parameters for the case of amplitude chimeras, bump states and composite amplitude-and-frequency chimeras. The proposed mechanisms of creating domains with variable amplitudes and/or frequencies provide a generic scenario for understanding the formation of the complex synchronization phenomena observed in networks of coupled nonlinear and chaotic oscillators.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"28 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amplitude chimeras and bump states with and without frequency entanglement: a toy model\",\"authors\":\"A Provata\",\"doi\":\"10.1088/2632-072x/ad4228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When chaotic oscillators are coupled in complex networks a number of interesting synchronization phenomena emerge. Notable examples are the frequency and amplitude chimeras, chimera death states, solitary states as well as combinations of these. In a previous study (Provata 2020 <italic toggle=\\\"yes\\\">J. Phys. Complex.</italic>\\n<bold>1</bold> 025006), a toy model was introduced addressing possible mechanisms behind the formation of frequency chimera states. In the present study a variation of the toy model is proposed to address the formation of amplitude chimeras. The proposed oscillatory model is now equipped with an additional 3rd order equation modulating the amplitude of the network oscillators. This way, the single oscillators are constructed as bistable in amplitude and depending on the initial conditions their amplitude may result in one of the two stable fixed points. Numerical simulations demonstrate that when these oscillators are nonlocally coupled in networks, they organize in domains with alternating amplitudes (related to the two fixed points), naturally forming amplitude chimeras. A second extension of this model incorporates nonlinear terms merging amplitude together with frequency, and this extension allows for the spontaneous production of composite amplitude-and-frequency chimeras occurring simultaneously in the network. Moreover the extended model allows to understand the emergence of bump states via the continuous passage from chimera states, when both fixed point amplitudes are positive, to bump states when one of the two fixed points vanishes. The synchronization properties of the network are studied as a function of the system parameters for the case of amplitude chimeras, bump states and composite amplitude-and-frequency chimeras. The proposed mechanisms of creating domains with variable amplitudes and/or frequencies provide a generic scenario for understanding the formation of the complex synchronization phenomena observed in networks of coupled nonlinear and chaotic oscillators.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad4228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad4228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

当混沌振荡器在复杂网络中耦合时,会出现许多有趣的同步现象。值得注意的例子有频率和振幅嵌合体、嵌合体死亡状态、孤独状态以及这些现象的组合。在之前的一项研究(Provata 2020 J. Phys. Complex.1 025006)中,介绍了一个玩具模型,探讨了频率嵌合体状态形成背后的可能机制。本研究提出了玩具模型的变体,以解决振幅嵌合体的形成问题。所提出的振荡模型现在增加了一个调节网络振荡器振幅的三阶方程。这样,单振荡器就被构造成振幅双稳态,根据初始条件,它们的振幅可能形成两个稳定定点中的一个。数值模拟证明,当这些振荡器在网络中非局部耦合时,它们会在振幅交替(与两个固定点相关)的域中组织起来,自然形成振幅嵌合体。该模型的第二个扩展部分包含了将振幅与频率合并在一起的非线性项,这一扩展允许在网络中同时自发产生振幅与频率的复合嵌合体。此外,该扩展模型还能通过从嵌合体状态(当两个固定点振幅均为正值时)到凹凸状态(当两个固定点中的一个消失时)的连续传递,理解凹凸状态的出现。针对振幅嵌合体、凹凸状态和振幅频率复合嵌合体,研究了网络同步特性与系统参数的函数关系。所提出的创建具有可变振幅和/或频率的域的机制,为理解在耦合非线性和混沌振荡器网络中观察到的复杂同步现象的形成提供了一个通用方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amplitude chimeras and bump states with and without frequency entanglement: a toy model
When chaotic oscillators are coupled in complex networks a number of interesting synchronization phenomena emerge. Notable examples are the frequency and amplitude chimeras, chimera death states, solitary states as well as combinations of these. In a previous study (Provata 2020 J. Phys. Complex. 1 025006), a toy model was introduced addressing possible mechanisms behind the formation of frequency chimera states. In the present study a variation of the toy model is proposed to address the formation of amplitude chimeras. The proposed oscillatory model is now equipped with an additional 3rd order equation modulating the amplitude of the network oscillators. This way, the single oscillators are constructed as bistable in amplitude and depending on the initial conditions their amplitude may result in one of the two stable fixed points. Numerical simulations demonstrate that when these oscillators are nonlocally coupled in networks, they organize in domains with alternating amplitudes (related to the two fixed points), naturally forming amplitude chimeras. A second extension of this model incorporates nonlinear terms merging amplitude together with frequency, and this extension allows for the spontaneous production of composite amplitude-and-frequency chimeras occurring simultaneously in the network. Moreover the extended model allows to understand the emergence of bump states via the continuous passage from chimera states, when both fixed point amplitudes are positive, to bump states when one of the two fixed points vanishes. The synchronization properties of the network are studied as a function of the system parameters for the case of amplitude chimeras, bump states and composite amplitude-and-frequency chimeras. The proposed mechanisms of creating domains with variable amplitudes and/or frequencies provide a generic scenario for understanding the formation of the complex synchronization phenomena observed in networks of coupled nonlinear and chaotic oscillators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
期刊最新文献
Persistent Mayer Dirac. Fitness-based growth of directed networks with hierarchy The ultrametric backbone is the union of all minimum spanning forests. Exploring the space of graphs with fixed discrete curvatures Augmentations of Forman’s Ricci curvature and their applications in community detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1