{"title":"以分层多孔 NiO x 装饰 ITO 玻璃为透明导电电极的互补电致变色装置性能增强","authors":"BIAO CHEN, Fei Hu, Yinghui Zhao, Yuanhaobo Yang, Bin Yan, Qin Yang, Yingchun Gu, Sheng Chen","doi":"10.1002/elan.202400117","DOIUrl":null,"url":null,"abstract":"To pursuit advancing electrochromic technology, the preparation of a novel hierarchical‐porous NiOx‐decorated ITO transparent conductive electrode was developed through the vapor‐assisted conversion and subsequent calcination processes. The modified transparent electrode exhibited advantages in the electrodeposition of conductive polymer films, which significantly enhanced electrochromic cycling stability. Moreover, the complementary electrochromic device based on NiOx‐decorated ITO transparent electrode was fabricated, demonstrating rapid response time (1.75 s for coloration and 0.87 s for bleaching), high optical contrast (53.4%), and remarkable cycling stability (90% optical contrast retention over 2000 cycles). This finding holds prominent potential for applications in related fields.","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"131 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Performance of Complementary Electrochromic Device with Hierarchical‐Porous NiO x Decorated ITO Glasses as the Transparent Conductive Electrodes\",\"authors\":\"BIAO CHEN, Fei Hu, Yinghui Zhao, Yuanhaobo Yang, Bin Yan, Qin Yang, Yingchun Gu, Sheng Chen\",\"doi\":\"10.1002/elan.202400117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To pursuit advancing electrochromic technology, the preparation of a novel hierarchical‐porous NiOx‐decorated ITO transparent conductive electrode was developed through the vapor‐assisted conversion and subsequent calcination processes. The modified transparent electrode exhibited advantages in the electrodeposition of conductive polymer films, which significantly enhanced electrochromic cycling stability. Moreover, the complementary electrochromic device based on NiOx‐decorated ITO transparent electrode was fabricated, demonstrating rapid response time (1.75 s for coloration and 0.87 s for bleaching), high optical contrast (53.4%), and remarkable cycling stability (90% optical contrast retention over 2000 cycles). This finding holds prominent potential for applications in related fields.\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/elan.202400117\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/elan.202400117","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
为了追求电致变色技术的进步,研究人员通过气相辅助转化和后续煅烧工艺,制备出了一种新型分层多孔镍氧化物装饰 ITO 透明导电电极。改性后的透明电极在导电聚合物薄膜的电沉积方面表现出优势,显著提高了电致变色循环的稳定性。此外,基于镍氧化物装饰的 ITO 透明电极的互补电致变色装置也已制成,并显示出快速的响应时间(着色为 1.75 秒,漂白为 0.87 秒)、高光学对比度(53.4%)和显著的循环稳定性(在 2000 次循环中光学对比度保持率为 90%)。这一发现为相关领域的应用带来了巨大潜力。
Enhanced Performance of Complementary Electrochromic Device with Hierarchical‐Porous NiO x Decorated ITO Glasses as the Transparent Conductive Electrodes
To pursuit advancing electrochromic technology, the preparation of a novel hierarchical‐porous NiOx‐decorated ITO transparent conductive electrode was developed through the vapor‐assisted conversion and subsequent calcination processes. The modified transparent electrode exhibited advantages in the electrodeposition of conductive polymer films, which significantly enhanced electrochromic cycling stability. Moreover, the complementary electrochromic device based on NiOx‐decorated ITO transparent electrode was fabricated, demonstrating rapid response time (1.75 s for coloration and 0.87 s for bleaching), high optical contrast (53.4%), and remarkable cycling stability (90% optical contrast retention over 2000 cycles). This finding holds prominent potential for applications in related fields.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.