Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui
{"title":"基于多尺度分析的多孔介质断裂周动力学模拟","authors":"Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui","doi":"10.1007/s11709-024-1043-9","DOIUrl":null,"url":null,"abstract":"<p>The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"65 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale analysis-based peridynamic simulation of fracture in porous media\",\"authors\":\"Zihao Yang, Shangkun Shen, Xiaofei Guan, Xindang He, Junzhi Cui\",\"doi\":\"10.1007/s11709-024-1043-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-024-1043-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1043-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Multiscale analysis-based peridynamic simulation of fracture in porous media
The simulation of fracture in large-scale structures made of porous media remains a challenging task. Current techniques either assume a homogeneous model, disregarding the microstructure characteristics, or adopt a micro-mechanical model, which incurs an intractable computational cost due to its complex stochastic geometry and physical properties, as well as its nonlinear and multiscale features. In this study, we propose a multiscale analysis-based dual-variable-horizon peridynamics (PD) model to efficiently simulate macroscopic structural fracture. The influence of microstructures in porous media on macroscopic structural failure is represented by two PD parameters: the equivalent critical stretch and micro-modulus. The equivalent critical stretch is calculated using the microscale PD model, while the equivalent micro-modulus is obtained through the homogenization method and energy density equivalence between classical continuum mechanics and PD models. Numerical examples of porous media with various microstructures demonstrate the validity, accuracy, and efficiency of the proposed method.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.