{"title":"具有恒定 PAPR 的最佳 OFDM-IM 信号","authors":"Jiabo Hu;Yajun Wang;Zhuxian Lian;Yinjie Su;Zhibin Xie","doi":"10.1109/TBC.2024.3394292","DOIUrl":null,"url":null,"abstract":"Orthogonal frequency division multiplexing indexed modulation (OFDM-IM), an emerging multi-carrier modulation technique, offers significant advantages over traditional OFDM. The OFDM-IM scheme exhibits superior performance in terms of bit error rate (BER) at low and medium data rates, while also enhancing resilience to inter-carrier interference in dynamically changing channels. However, the challenge of a high peak-to-average ratio (PAPR) also persists in OFDM-IM. In this study, we propose a novel approach to mitigate PAPR by introducing a small dither signal to the idle subcarrier, leveraging the inherent characteristics of OFDM-IM. Subsequently, we address the nonconvex and non-smooth optimization problem of minimizing the maximum amplitude of dither signals while maintaining a constant PAPR constraint. To effectively tackle this challenging optimization task, we adopt the linearized alternating direction multiplier method (LADMM), referred to as the LADMM-direct algorithm, which provides a simple closed-form solution for each subproblem encountered during the optimization process. To improve the convergence rate of the LADMM-direct algorithm, a LADMM-relax algorithm is also proposed to address the PAPR problem. Simulation results demonstrate that our proposed LADMM-direct and LADMM-relax algorithms significantly reduce computational complexity and achieve superior performance in terms of both PAPR and bit error rate (BER) compared to state-of-the-art algorithms.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"945-954"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal OFDM-IM Signals With Constant PAPR\",\"authors\":\"Jiabo Hu;Yajun Wang;Zhuxian Lian;Yinjie Su;Zhibin Xie\",\"doi\":\"10.1109/TBC.2024.3394292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal frequency division multiplexing indexed modulation (OFDM-IM), an emerging multi-carrier modulation technique, offers significant advantages over traditional OFDM. The OFDM-IM scheme exhibits superior performance in terms of bit error rate (BER) at low and medium data rates, while also enhancing resilience to inter-carrier interference in dynamically changing channels. However, the challenge of a high peak-to-average ratio (PAPR) also persists in OFDM-IM. In this study, we propose a novel approach to mitigate PAPR by introducing a small dither signal to the idle subcarrier, leveraging the inherent characteristics of OFDM-IM. Subsequently, we address the nonconvex and non-smooth optimization problem of minimizing the maximum amplitude of dither signals while maintaining a constant PAPR constraint. To effectively tackle this challenging optimization task, we adopt the linearized alternating direction multiplier method (LADMM), referred to as the LADMM-direct algorithm, which provides a simple closed-form solution for each subproblem encountered during the optimization process. To improve the convergence rate of the LADMM-direct algorithm, a LADMM-relax algorithm is also proposed to address the PAPR problem. Simulation results demonstrate that our proposed LADMM-direct and LADMM-relax algorithms significantly reduce computational complexity and achieve superior performance in terms of both PAPR and bit error rate (BER) compared to state-of-the-art algorithms.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 3\",\"pages\":\"945-954\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10528795/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10528795/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Orthogonal frequency division multiplexing indexed modulation (OFDM-IM), an emerging multi-carrier modulation technique, offers significant advantages over traditional OFDM. The OFDM-IM scheme exhibits superior performance in terms of bit error rate (BER) at low and medium data rates, while also enhancing resilience to inter-carrier interference in dynamically changing channels. However, the challenge of a high peak-to-average ratio (PAPR) also persists in OFDM-IM. In this study, we propose a novel approach to mitigate PAPR by introducing a small dither signal to the idle subcarrier, leveraging the inherent characteristics of OFDM-IM. Subsequently, we address the nonconvex and non-smooth optimization problem of minimizing the maximum amplitude of dither signals while maintaining a constant PAPR constraint. To effectively tackle this challenging optimization task, we adopt the linearized alternating direction multiplier method (LADMM), referred to as the LADMM-direct algorithm, which provides a simple closed-form solution for each subproblem encountered during the optimization process. To improve the convergence rate of the LADMM-direct algorithm, a LADMM-relax algorithm is also proposed to address the PAPR problem. Simulation results demonstrate that our proposed LADMM-direct and LADMM-relax algorithms significantly reduce computational complexity and achieve superior performance in terms of both PAPR and bit error rate (BER) compared to state-of-the-art algorithms.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”