{"title":"用于非酶葡萄糖传感和疏水涂层应用的 BaTiO3 纳米管自由阵列","authors":"Ganganapalli Gousiya Bhanu, B Manmadha Rao","doi":"10.1088/2632-959x/ad437a","DOIUrl":null,"url":null,"abstract":"BaTiO<sub>3</sub> nanostructures have been considered as a promising candidates in recent past for energy and biomedical sectors owing to their excellent physiochemical properties, such as high dielectric constant, excellent piezoelectric property, good biocompatibility, non-linear optical characteristics etc. Present study reveals on free-standing arrays of BaTiO<sub>3</sub> nanostructures, were fabricated by hydrothermal conversion of anodic TiO<sub>2</sub> nanotubes. Morphological and structural information of the BaTiO<sub>3</sub> nanotubes were done using FESEM and XRD studies. FESEM analysis revealed that the fabricated samples were having tubular morphology of average length and pore diameter of 4.63 <italic toggle=\"yes\">μ</italic>m and 290 nm respectively. Cubical perovskite crystalline phase of BaTiO<sub>3</sub> was confirmed through XRD analysis. The BaTiO<sub>3</sub> nanotube samples had shown a higher sensitivity of 44.43 <italic toggle=\"yes\">μ</italic>A mM<sup>−1</sup> cm<sup>−2</sup> and a faster response of 0.1 s for glucose detection. The fabricated BaTiO<sub>3</sub> nanotubes film also showed a higher contact angle of 122.70°. Therefore, our present fabrication on Titanium foil study emphasizes on arrays of BaTiO<sub>3</sub> nanotubes which will open up a new window in the development of various types of sensing and hydrophobic coating applications.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-standing arrays of BaTiO3 nanotubes for non-enzymatic glucose sensing & hydrophobic coating applications\",\"authors\":\"Ganganapalli Gousiya Bhanu, B Manmadha Rao\",\"doi\":\"10.1088/2632-959x/ad437a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BaTiO<sub>3</sub> nanostructures have been considered as a promising candidates in recent past for energy and biomedical sectors owing to their excellent physiochemical properties, such as high dielectric constant, excellent piezoelectric property, good biocompatibility, non-linear optical characteristics etc. Present study reveals on free-standing arrays of BaTiO<sub>3</sub> nanostructures, were fabricated by hydrothermal conversion of anodic TiO<sub>2</sub> nanotubes. Morphological and structural information of the BaTiO<sub>3</sub> nanotubes were done using FESEM and XRD studies. FESEM analysis revealed that the fabricated samples were having tubular morphology of average length and pore diameter of 4.63 <italic toggle=\\\"yes\\\">μ</italic>m and 290 nm respectively. Cubical perovskite crystalline phase of BaTiO<sub>3</sub> was confirmed through XRD analysis. The BaTiO<sub>3</sub> nanotube samples had shown a higher sensitivity of 44.43 <italic toggle=\\\"yes\\\">μ</italic>A mM<sup>−1</sup> cm<sup>−2</sup> and a faster response of 0.1 s for glucose detection. The fabricated BaTiO<sub>3</sub> nanotubes film also showed a higher contact angle of 122.70°. Therefore, our present fabrication on Titanium foil study emphasizes on arrays of BaTiO<sub>3</sub> nanotubes which will open up a new window in the development of various types of sensing and hydrophobic coating applications.\",\"PeriodicalId\":501827,\"journal\":{\"name\":\"Nano Express\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-959x/ad437a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad437a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Free-standing arrays of BaTiO3 nanotubes for non-enzymatic glucose sensing & hydrophobic coating applications
BaTiO3 nanostructures have been considered as a promising candidates in recent past for energy and biomedical sectors owing to their excellent physiochemical properties, such as high dielectric constant, excellent piezoelectric property, good biocompatibility, non-linear optical characteristics etc. Present study reveals on free-standing arrays of BaTiO3 nanostructures, were fabricated by hydrothermal conversion of anodic TiO2 nanotubes. Morphological and structural information of the BaTiO3 nanotubes were done using FESEM and XRD studies. FESEM analysis revealed that the fabricated samples were having tubular morphology of average length and pore diameter of 4.63 μm and 290 nm respectively. Cubical perovskite crystalline phase of BaTiO3 was confirmed through XRD analysis. The BaTiO3 nanotube samples had shown a higher sensitivity of 44.43 μA mM−1 cm−2 and a faster response of 0.1 s for glucose detection. The fabricated BaTiO3 nanotubes film also showed a higher contact angle of 122.70°. Therefore, our present fabrication on Titanium foil study emphasizes on arrays of BaTiO3 nanotubes which will open up a new window in the development of various types of sensing and hydrophobic coating applications.