水凝胶稳定锌离子电池:进展与展望

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-06-04 DOI:10.1039/d4gc01465k
Le Li , Shaofeng Jia , Shi Yue , Conghui Wang , Hengwei Qiu , Yongqiang Ji , Minghui Cao , Dan Zhang
{"title":"水凝胶稳定锌离子电池:进展与展望","authors":"Le Li ,&nbsp;Shaofeng Jia ,&nbsp;Shi Yue ,&nbsp;Conghui Wang ,&nbsp;Hengwei Qiu ,&nbsp;Yongqiang Ji ,&nbsp;Minghui Cao ,&nbsp;Dan Zhang","doi":"10.1039/d4gc01465k","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-ion batteries (ZIBs) offer numerous advantages, such as high energy density, enhanced safety, and low cost, making them an ideal choice for energy storage and conversion applications in the “post-lithium” era. Hydrogel electrolytes, as the key component of flexible ZIBs, combine the ionic conductivity of traditional water electrolytes with the dimensional stability of solid polymer electrolytes. However, it remains a challenge to design comprehensive and appropriate hydrogel electrolytes to provide flexible ZIBs with good reversibility and versatility. This review discusses the engineering design of hydrogel electrolytes required for flexible ZIBs from the viewpoint of an electrolyte designer. The basic properties of the hydrogel electrolytes, zinc anodes, cathodes and electrolyte stabilization effects are described in detail. Furthermore, we explore the various challenges faced by hydrogel electrolytes and propose corresponding strategies. Finally, the review offers insights into the future development of hydrogel-stabilized ZIBs.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogel-stabilized zinc ion batteries: progress and outlook\",\"authors\":\"Le Li ,&nbsp;Shaofeng Jia ,&nbsp;Shi Yue ,&nbsp;Conghui Wang ,&nbsp;Hengwei Qiu ,&nbsp;Yongqiang Ji ,&nbsp;Minghui Cao ,&nbsp;Dan Zhang\",\"doi\":\"10.1039/d4gc01465k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc-ion batteries (ZIBs) offer numerous advantages, such as high energy density, enhanced safety, and low cost, making them an ideal choice for energy storage and conversion applications in the “post-lithium” era. Hydrogel electrolytes, as the key component of flexible ZIBs, combine the ionic conductivity of traditional water electrolytes with the dimensional stability of solid polymer electrolytes. However, it remains a challenge to design comprehensive and appropriate hydrogel electrolytes to provide flexible ZIBs with good reversibility and versatility. This review discusses the engineering design of hydrogel electrolytes required for flexible ZIBs from the viewpoint of an electrolyte designer. The basic properties of the hydrogel electrolytes, zinc anodes, cathodes and electrolyte stabilization effects are described in detail. Furthermore, we explore the various challenges faced by hydrogel electrolytes and propose corresponding strategies. Finally, the review offers insights into the future development of hydrogel-stabilized ZIBs.</p></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S146392622400493X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S146392622400493X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池(ZIB)具有高能量密度、更高安全性和低成本等众多优势,是 "后锂 "时代能源存储和转换应用的理想选择。作为柔性 ZIB 的关键成分,水凝胶电解质兼具传统水电解质的离子导电性和固体聚合物电解质的尺寸稳定性。然而,如何设计出全面、适当的水凝胶电解质,以提供具有良好可逆性和多功能性的柔性 ZIB,仍然是一项挑战。本综述将从电解质设计者的角度讨论柔性 ZIB 所需的水凝胶电解质的工程设计。文中详细介绍了水凝胶电解质的基本特性、锌阳极、阴极和电解质稳定效应。此外,我们还探讨了水凝胶电解质面临的各种挑战,并提出了相应的策略。最后,本综述还对水凝胶稳定 ZIB 的未来发展提出了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogel-stabilized zinc ion batteries: progress and outlook

Aqueous zinc-ion batteries (ZIBs) offer numerous advantages, such as high energy density, enhanced safety, and low cost, making them an ideal choice for energy storage and conversion applications in the “post-lithium” era. Hydrogel electrolytes, as the key component of flexible ZIBs, combine the ionic conductivity of traditional water electrolytes with the dimensional stability of solid polymer electrolytes. However, it remains a challenge to design comprehensive and appropriate hydrogel electrolytes to provide flexible ZIBs with good reversibility and versatility. This review discusses the engineering design of hydrogel electrolytes required for flexible ZIBs from the viewpoint of an electrolyte designer. The basic properties of the hydrogel electrolytes, zinc anodes, cathodes and electrolyte stabilization effects are described in detail. Furthermore, we explore the various challenges faced by hydrogel electrolytes and propose corresponding strategies. Finally, the review offers insights into the future development of hydrogel-stabilized ZIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Correction: Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol Rational bottom-up synthesis of sulphur-rich porous carbons for single-atomic platinum catalyst supports Balancing computational chemistry's potential with its environmental impact Correction: Metal-free visible-light-induced phosphorylation of unactivated alkyl iodides with white phosphorus as the P-atom source Low-chromophore lignin isolation from natural biomass with polyol-based deep eutectic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1