{"title":"二氧化硅纳米粒子对聚乙烯醇/羧甲基纤维素聚合物共混薄膜的结构、润湿性、表面粗糙度和光学特性的影响","authors":"T. S. Soliman","doi":"10.1155/2024/3623198","DOIUrl":null,"url":null,"abstract":"<p>The blend matrix composed of polyvinyl alcohol and carboxymethylcellulose (PVA/CMC) was prepared via the casting method. SiO<sub>2</sub> nanoparticles were added as reinforcement in different amounts (SiO<sub>2</sub> = 1, 2, 3, and 4 wt.%). The study utilized FTIR to examine the alterations in composition and the interplay between the blend matrix and the inclusion of SiO<sub>2</sub>. Also, for the first time, the surface roughness and surface wettability of the PVA/CMC blend matrix were investigated with the addition of SiO<sub>2</sub> using measurements of contact angle and surface roughness parameters. The surface roughness and wettability of the blend matrix increased as the SiO<sub>2</sub> content increased. In addition, the blend matrix optical features were determined by the UV–visible spectrophotometer. Based on the analysis using Tauc’s relation, it was found that the energy bandgap decreases from 5.52 to 5.17 eV (direct transition) and from 4.79 to 4.32 eV (indirect transition) for the PVA/CMC and PVA/CMC/4%SiO<sub>2</sub> blend films, respectively. The refractive index increases from 2.009 to about 2.144 for the PVA/CMC and PVA/CMC/4%SiO<sub>2</sub> blend films, respectively. Furthermore, optical conductivity and dielectric constants were improved for the PVA/CMC blend film after the addition of SiO<sub>2</sub> nanoparticles.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3623198","citationCount":"0","resultStr":"{\"title\":\"Effects of SiO2 Nanoparticles on Polyvinyl Alcohol/Carboxymethyl Cellulose Polymer Blend Films’ Structural, Wettability, Surface Roughness, and Optical Characteristics\",\"authors\":\"T. S. Soliman\",\"doi\":\"10.1155/2024/3623198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blend matrix composed of polyvinyl alcohol and carboxymethylcellulose (PVA/CMC) was prepared via the casting method. SiO<sub>2</sub> nanoparticles were added as reinforcement in different amounts (SiO<sub>2</sub> = 1, 2, 3, and 4 wt.%). The study utilized FTIR to examine the alterations in composition and the interplay between the blend matrix and the inclusion of SiO<sub>2</sub>. Also, for the first time, the surface roughness and surface wettability of the PVA/CMC blend matrix were investigated with the addition of SiO<sub>2</sub> using measurements of contact angle and surface roughness parameters. The surface roughness and wettability of the blend matrix increased as the SiO<sub>2</sub> content increased. In addition, the blend matrix optical features were determined by the UV–visible spectrophotometer. Based on the analysis using Tauc’s relation, it was found that the energy bandgap decreases from 5.52 to 5.17 eV (direct transition) and from 4.79 to 4.32 eV (indirect transition) for the PVA/CMC and PVA/CMC/4%SiO<sub>2</sub> blend films, respectively. The refractive index increases from 2.009 to about 2.144 for the PVA/CMC and PVA/CMC/4%SiO<sub>2</sub> blend films, respectively. Furthermore, optical conductivity and dielectric constants were improved for the PVA/CMC blend film after the addition of SiO<sub>2</sub> nanoparticles.</p>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3623198\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3623198\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3623198","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effects of SiO2 Nanoparticles on Polyvinyl Alcohol/Carboxymethyl Cellulose Polymer Blend Films’ Structural, Wettability, Surface Roughness, and Optical Characteristics
The blend matrix composed of polyvinyl alcohol and carboxymethylcellulose (PVA/CMC) was prepared via the casting method. SiO2 nanoparticles were added as reinforcement in different amounts (SiO2 = 1, 2, 3, and 4 wt.%). The study utilized FTIR to examine the alterations in composition and the interplay between the blend matrix and the inclusion of SiO2. Also, for the first time, the surface roughness and surface wettability of the PVA/CMC blend matrix were investigated with the addition of SiO2 using measurements of contact angle and surface roughness parameters. The surface roughness and wettability of the blend matrix increased as the SiO2 content increased. In addition, the blend matrix optical features were determined by the UV–visible spectrophotometer. Based on the analysis using Tauc’s relation, it was found that the energy bandgap decreases from 5.52 to 5.17 eV (direct transition) and from 4.79 to 4.32 eV (indirect transition) for the PVA/CMC and PVA/CMC/4%SiO2 blend films, respectively. The refractive index increases from 2.009 to about 2.144 for the PVA/CMC and PVA/CMC/4%SiO2 blend films, respectively. Furthermore, optical conductivity and dielectric constants were improved for the PVA/CMC blend film after the addition of SiO2 nanoparticles.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.