{"title":"2015 年地磁暴期间中低纬度子午线链的地磁扰动","authors":"Xinxin Ma, Zhan Lin, Xizheng Wang, Qi Li, Suqin Zhang","doi":"10.1007/s10509-024-04309-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presented an analysis of geomagnetic disturbance observed on the ground during geomagnetic storms with different intensities in 2015 using the meridian chain data at geomagnetic mid and low latitudes. Ground observation records superimpose varying types of space-current system and noise interference. Geomagnetic disturbance with variation of discontinuity and irregularities are difficult to identify and distinguish. We proposed a variational mode decomposition (VMD) algorithm for reconstructing geomagnetic horizontal (<span>\\(H\\)</span>) disturbance signals. We decomposed the geomagnetic signals into geomagnetic disturbance signals, diurnal variation signals, and noise disturbance signals using the VMD algorithm. Intrinsic mode functions (IMFs) were selected to form the reconstructed signal, which represented a geomagnetic disturbance during a geomagnetic storm. We investigated the decreased amplitude of <span>\\(H\\)</span> component obtained from the reconstructed signals during main phase of geomagnetic storms with different geomagnetic storms intensities and seasons at mid and low latitudes. The maximum values of gradient variation of <span>\\(H \\)</span> component disturbance with geomagnetic latitude cosine are near magnetic latitude 30°N during geomagnetic storms with different intensities and seasons. Ionopheric structural changes in the low-to-mid latitude transition zone maybe the primary cause. The result provides a reference for the complex coupling relationship between the ionosphere and magnetosphere during geomagnetic storms.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geomagnetic disturbance of the meridian chain at mid and low latitudes during 2015 geomagnetic storms\",\"authors\":\"Xinxin Ma, Zhan Lin, Xizheng Wang, Qi Li, Suqin Zhang\",\"doi\":\"10.1007/s10509-024-04309-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presented an analysis of geomagnetic disturbance observed on the ground during geomagnetic storms with different intensities in 2015 using the meridian chain data at geomagnetic mid and low latitudes. Ground observation records superimpose varying types of space-current system and noise interference. Geomagnetic disturbance with variation of discontinuity and irregularities are difficult to identify and distinguish. We proposed a variational mode decomposition (VMD) algorithm for reconstructing geomagnetic horizontal (<span>\\\\(H\\\\)</span>) disturbance signals. We decomposed the geomagnetic signals into geomagnetic disturbance signals, diurnal variation signals, and noise disturbance signals using the VMD algorithm. Intrinsic mode functions (IMFs) were selected to form the reconstructed signal, which represented a geomagnetic disturbance during a geomagnetic storm. We investigated the decreased amplitude of <span>\\\\(H\\\\)</span> component obtained from the reconstructed signals during main phase of geomagnetic storms with different geomagnetic storms intensities and seasons at mid and low latitudes. The maximum values of gradient variation of <span>\\\\(H \\\\)</span> component disturbance with geomagnetic latitude cosine are near magnetic latitude 30°N during geomagnetic storms with different intensities and seasons. Ionopheric structural changes in the low-to-mid latitude transition zone maybe the primary cause. The result provides a reference for the complex coupling relationship between the ionosphere and magnetosphere during geomagnetic storms.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04309-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04309-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Geomagnetic disturbance of the meridian chain at mid and low latitudes during 2015 geomagnetic storms
This paper presented an analysis of geomagnetic disturbance observed on the ground during geomagnetic storms with different intensities in 2015 using the meridian chain data at geomagnetic mid and low latitudes. Ground observation records superimpose varying types of space-current system and noise interference. Geomagnetic disturbance with variation of discontinuity and irregularities are difficult to identify and distinguish. We proposed a variational mode decomposition (VMD) algorithm for reconstructing geomagnetic horizontal (\(H\)) disturbance signals. We decomposed the geomagnetic signals into geomagnetic disturbance signals, diurnal variation signals, and noise disturbance signals using the VMD algorithm. Intrinsic mode functions (IMFs) were selected to form the reconstructed signal, which represented a geomagnetic disturbance during a geomagnetic storm. We investigated the decreased amplitude of \(H\) component obtained from the reconstructed signals during main phase of geomagnetic storms with different geomagnetic storms intensities and seasons at mid and low latitudes. The maximum values of gradient variation of \(H \) component disturbance with geomagnetic latitude cosine are near magnetic latitude 30°N during geomagnetic storms with different intensities and seasons. Ionopheric structural changes in the low-to-mid latitude transition zone maybe the primary cause. The result provides a reference for the complex coupling relationship between the ionosphere and magnetosphere during geomagnetic storms.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.