利用脑电信号多分辨率特征融合智能诊断青少年精神分裂症

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2024-05-11 DOI:10.1007/s11571-024-10120-1
Rakesh Ranjan, Bikash Chandra Sahana
{"title":"利用脑电信号多分辨率特征融合智能诊断青少年精神分裂症","authors":"Rakesh Ranjan, Bikash Chandra Sahana","doi":"10.1007/s11571-024-10120-1","DOIUrl":null,"url":null,"abstract":"<p>Numerous studies on early detection of schizophrenia (SZ) have utilized all available channels or employed set of a few time domain or frequency domain features, while a limited number of features may not be sufficient enough to perform diagnosis efficiently. To encounter these problems, an automated diagnosis model is proposed for the efficient diagnosis of schizophrenia symptomatic adolescent subjects from electroencephalogram (EEG) signals via machine intelligence. A publicly accessible EEG dataset featuring 16-channels EEG obtained from 84 adolescents (45 SZ symptomatic and 39 healthy control) is used to demonstrate the work. Initially, the signals are decomposed into sub-bands using two multi-resolution signal analysis methods: Empirical Wavelet Transform and Empirical mode decomposition. 75 unique features from each sub-bands are extracted and the few selective prominent features are applied to machine learning classifiers for optimal sub-band selection. Subsequently, a hybrid model is proposed, combining convolutional neural network (CNN) and ensemble bagged tree, incorporating both deep learning and handcrafted features to perform SZ diagnosis. This innovative model achieved superior classification performance compared to existing methods, offering a promising approach for SZ diagnosis. Furthermore, the study explores the impact of different brain regions and combined regional data in SZ diagnosis comprehensively. Hence, this computer-assisted decision-making model minimizes the limitations of prior studies by providing a more robust and efficient diagnostic system for schizophrenia.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals\",\"authors\":\"Rakesh Ranjan, Bikash Chandra Sahana\",\"doi\":\"10.1007/s11571-024-10120-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous studies on early detection of schizophrenia (SZ) have utilized all available channels or employed set of a few time domain or frequency domain features, while a limited number of features may not be sufficient enough to perform diagnosis efficiently. To encounter these problems, an automated diagnosis model is proposed for the efficient diagnosis of schizophrenia symptomatic adolescent subjects from electroencephalogram (EEG) signals via machine intelligence. A publicly accessible EEG dataset featuring 16-channels EEG obtained from 84 adolescents (45 SZ symptomatic and 39 healthy control) is used to demonstrate the work. Initially, the signals are decomposed into sub-bands using two multi-resolution signal analysis methods: Empirical Wavelet Transform and Empirical mode decomposition. 75 unique features from each sub-bands are extracted and the few selective prominent features are applied to machine learning classifiers for optimal sub-band selection. Subsequently, a hybrid model is proposed, combining convolutional neural network (CNN) and ensemble bagged tree, incorporating both deep learning and handcrafted features to perform SZ diagnosis. This innovative model achieved superior classification performance compared to existing methods, offering a promising approach for SZ diagnosis. Furthermore, the study explores the impact of different brain regions and combined regional data in SZ diagnosis comprehensively. Hence, this computer-assisted decision-making model minimizes the limitations of prior studies by providing a more robust and efficient diagnostic system for schizophrenia.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10120-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10120-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有关精神分裂症(SZ)早期检测的大量研究利用了所有可用的通道或采用了一组少数时域或频域特征,而有限的特征数量可能不足以有效地进行诊断。针对这些问题,我们提出了一种自动诊断模型,通过机器智能从脑电图(EEG)信号中高效诊断出有精神分裂症症状的青少年受试者。我们使用了一个可公开访问的脑电图数据集,该数据集由 84 名青少年(45 名有精神分裂症症状的青少年和 39 名健康对照组青少年)的 16 通道脑电图组成。首先,使用两种多分辨率信号分析方法将信号分解为子带:经验小波变换和经验模式分解。从每个子波段中提取 75 个独特特征,并将少数几个选择性突出特征应用于机器学习分类器,以优化子波段选择。随后,提出了一种混合模型,将卷积神经网络(CNN)和集合袋装树相结合,结合深度学习和手工特征来进行 SZ 诊断。与现有方法相比,这一创新模型实现了更优越的分类性能,为 SZ 诊断提供了一种前景广阔的方法。此外,该研究还全面探讨了不同脑区和综合区域数据对 SZ 诊断的影响。因此,该计算机辅助决策模型最大限度地减少了以往研究的局限性,为精神分裂症提供了一个更稳健、更高效的诊断系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiresolution feature fusion for smart diagnosis of schizophrenia in adolescents using EEG signals

Numerous studies on early detection of schizophrenia (SZ) have utilized all available channels or employed set of a few time domain or frequency domain features, while a limited number of features may not be sufficient enough to perform diagnosis efficiently. To encounter these problems, an automated diagnosis model is proposed for the efficient diagnosis of schizophrenia symptomatic adolescent subjects from electroencephalogram (EEG) signals via machine intelligence. A publicly accessible EEG dataset featuring 16-channels EEG obtained from 84 adolescents (45 SZ symptomatic and 39 healthy control) is used to demonstrate the work. Initially, the signals are decomposed into sub-bands using two multi-resolution signal analysis methods: Empirical Wavelet Transform and Empirical mode decomposition. 75 unique features from each sub-bands are extracted and the few selective prominent features are applied to machine learning classifiers for optimal sub-band selection. Subsequently, a hybrid model is proposed, combining convolutional neural network (CNN) and ensemble bagged tree, incorporating both deep learning and handcrafted features to perform SZ diagnosis. This innovative model achieved superior classification performance compared to existing methods, offering a promising approach for SZ diagnosis. Furthermore, the study explores the impact of different brain regions and combined regional data in SZ diagnosis comprehensively. Hence, this computer-assisted decision-making model minimizes the limitations of prior studies by providing a more robust and efficient diagnostic system for schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
A memristor-based circuit design of avoidance learning with time delay and its application Perceptual information processing in table tennis players: based on top-down hierarchical predictive coding EEG-based deception detection using weighted dual perspective visibility graph analysis The dynamical behavior effects of different numbers of discrete memristive synaptic coupled neurons Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1