Lijia Cao, Lin Wang, Yang Liu, Weihong Xu, Chuang Geng
{"title":"基于深度强化学习的无人飞行器反应式轨迹规划方法","authors":"Lijia Cao, Lin Wang, Yang Liu, Weihong Xu, Chuang Geng","doi":"10.1177/09544100241252233","DOIUrl":null,"url":null,"abstract":"In order to improve the ability of avoiding dynamic threats during the flight of unmanned aerial vehicles (UAVs), a deep reinforcement learning-based reactive trajectory planning method is proposed in this paper. Firstly, a constrained Rapidly-exploring Random Tree-Connect algorithm (C-RRT-Connect) is proposed as the basic algorithm of reactive trajectory planning to globally plan for avoiding static obstacles in the environment. The C-RRT-Connect algorithm introduces the idea of target attraction to constrain the optimal growth point in the RRT-Connect algorithm. Then, based on the global trajectory, the local optimization is carried out according to the dynamic threats detected by the UAV during the flight. According to the real-time relative state between the UAV and the detected dynamic threat, the reaction sampling points and directional coefficients for avoiding the corresponding dynamic threat are generated online via the action network trained with the depth deterministic policy gradient algorithm (DDPG). And then the local trajectory is adjusted to modify the flight trajectory of the UAV to achieve reactive obstacle avoidance. The simulation experiment firstly compares the global trajectory planning performance of C-RRT-Connect and RRT-Connect in static environment, and secondly compares the local trajectory planning performance of DDPG algorithm and the artificial potential field method in dynamic environment. The experimental results show that in static environment, C-RRT-Connect algorithm has faster searching speed, less invalid samples and higher searching trajectory quality than RRT-Connect algorithm; In a dynamic environment, DDPG algorithm reduces the average running time by about 26% compared with the artificial potential field method, and has a stronger ability to evade dynamic threats in real time.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning-based reactive trajectory planning method for UAVs\",\"authors\":\"Lijia Cao, Lin Wang, Yang Liu, Weihong Xu, Chuang Geng\",\"doi\":\"10.1177/09544100241252233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the ability of avoiding dynamic threats during the flight of unmanned aerial vehicles (UAVs), a deep reinforcement learning-based reactive trajectory planning method is proposed in this paper. Firstly, a constrained Rapidly-exploring Random Tree-Connect algorithm (C-RRT-Connect) is proposed as the basic algorithm of reactive trajectory planning to globally plan for avoiding static obstacles in the environment. The C-RRT-Connect algorithm introduces the idea of target attraction to constrain the optimal growth point in the RRT-Connect algorithm. Then, based on the global trajectory, the local optimization is carried out according to the dynamic threats detected by the UAV during the flight. According to the real-time relative state between the UAV and the detected dynamic threat, the reaction sampling points and directional coefficients for avoiding the corresponding dynamic threat are generated online via the action network trained with the depth deterministic policy gradient algorithm (DDPG). And then the local trajectory is adjusted to modify the flight trajectory of the UAV to achieve reactive obstacle avoidance. The simulation experiment firstly compares the global trajectory planning performance of C-RRT-Connect and RRT-Connect in static environment, and secondly compares the local trajectory planning performance of DDPG algorithm and the artificial potential field method in dynamic environment. The experimental results show that in static environment, C-RRT-Connect algorithm has faster searching speed, less invalid samples and higher searching trajectory quality than RRT-Connect algorithm; In a dynamic environment, DDPG algorithm reduces the average running time by about 26% compared with the artificial potential field method, and has a stronger ability to evade dynamic threats in real time.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100241252233\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241252233","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Deep reinforcement learning-based reactive trajectory planning method for UAVs
In order to improve the ability of avoiding dynamic threats during the flight of unmanned aerial vehicles (UAVs), a deep reinforcement learning-based reactive trajectory planning method is proposed in this paper. Firstly, a constrained Rapidly-exploring Random Tree-Connect algorithm (C-RRT-Connect) is proposed as the basic algorithm of reactive trajectory planning to globally plan for avoiding static obstacles in the environment. The C-RRT-Connect algorithm introduces the idea of target attraction to constrain the optimal growth point in the RRT-Connect algorithm. Then, based on the global trajectory, the local optimization is carried out according to the dynamic threats detected by the UAV during the flight. According to the real-time relative state between the UAV and the detected dynamic threat, the reaction sampling points and directional coefficients for avoiding the corresponding dynamic threat are generated online via the action network trained with the depth deterministic policy gradient algorithm (DDPG). And then the local trajectory is adjusted to modify the flight trajectory of the UAV to achieve reactive obstacle avoidance. The simulation experiment firstly compares the global trajectory planning performance of C-RRT-Connect and RRT-Connect in static environment, and secondly compares the local trajectory planning performance of DDPG algorithm and the artificial potential field method in dynamic environment. The experimental results show that in static environment, C-RRT-Connect algorithm has faster searching speed, less invalid samples and higher searching trajectory quality than RRT-Connect algorithm; In a dynamic environment, DDPG algorithm reduces the average running time by about 26% compared with the artificial potential field method, and has a stronger ability to evade dynamic threats in real time.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).