Bo Peng, Lin Sun, Jianjun Lei, Bingzheng Liu, Haifeng Shen, Wanqing Li, Qingming Huang
{"title":"通过双眼几何相关性学习实现自我监督的单眼深度估计","authors":"Bo Peng, Lin Sun, Jianjun Lei, Bingzheng Liu, Haifeng Shen, Wanqing Li, Qingming Huang","doi":"10.1145/3663570","DOIUrl":null,"url":null,"abstract":"<p>Monocular depth estimation aims to infer a depth map from a single image. Although supervised learning-based methods have achieved remarkable performance, they generally rely on a large amount of labor-intensively annotated data. Self-supervised methods on the other hand do not require any annotation of ground-truth depth and have recently attracted increasing attention. In this work, we propose a self-supervised monocular depth estimation network via binocular geometric correlation learning. Specifically, considering the inter-view geometric correlation, a binocular cue prediction module is presented to generate the auxiliary vision cue for the self-supervised learning of monocular depth estimation. Then, to deal with the occlusion in depth estimation, an occlusion interference attenuated constraint is developed to guide the supervision of the network by inferring the occlusion region and producing paired occlusion masks. Experimental results on two popular benchmark datasets have demonstrated that the proposed network obtains competitive results compared to state-of-the-art self-supervised methods and achieves comparable results to some popular supervised methods.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"33 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supervised Monocular Depth Estimation via Binocular Geometric Correlation Learning\",\"authors\":\"Bo Peng, Lin Sun, Jianjun Lei, Bingzheng Liu, Haifeng Shen, Wanqing Li, Qingming Huang\",\"doi\":\"10.1145/3663570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monocular depth estimation aims to infer a depth map from a single image. Although supervised learning-based methods have achieved remarkable performance, they generally rely on a large amount of labor-intensively annotated data. Self-supervised methods on the other hand do not require any annotation of ground-truth depth and have recently attracted increasing attention. In this work, we propose a self-supervised monocular depth estimation network via binocular geometric correlation learning. Specifically, considering the inter-view geometric correlation, a binocular cue prediction module is presented to generate the auxiliary vision cue for the self-supervised learning of monocular depth estimation. Then, to deal with the occlusion in depth estimation, an occlusion interference attenuated constraint is developed to guide the supervision of the network by inferring the occlusion region and producing paired occlusion masks. Experimental results on two popular benchmark datasets have demonstrated that the proposed network obtains competitive results compared to state-of-the-art self-supervised methods and achieves comparable results to some popular supervised methods.</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3663570\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663570","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Self-Supervised Monocular Depth Estimation via Binocular Geometric Correlation Learning
Monocular depth estimation aims to infer a depth map from a single image. Although supervised learning-based methods have achieved remarkable performance, they generally rely on a large amount of labor-intensively annotated data. Self-supervised methods on the other hand do not require any annotation of ground-truth depth and have recently attracted increasing attention. In this work, we propose a self-supervised monocular depth estimation network via binocular geometric correlation learning. Specifically, considering the inter-view geometric correlation, a binocular cue prediction module is presented to generate the auxiliary vision cue for the self-supervised learning of monocular depth estimation. Then, to deal with the occlusion in depth estimation, an occlusion interference attenuated constraint is developed to guide the supervision of the network by inferring the occlusion region and producing paired occlusion masks. Experimental results on two popular benchmark datasets have demonstrated that the proposed network obtains competitive results compared to state-of-the-art self-supervised methods and achieves comparable results to some popular supervised methods.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.