在离散时间动态环境中运行的海洋动力设备的系统可靠性建模与分析

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL Quality and Reliability Engineering International Pub Date : 2024-05-11 DOI:10.1002/qre.3577
Yan Li, Wei Zhang, Lirong Cui, Hongda Gao
{"title":"在离散时间动态环境中运行的海洋动力设备的系统可靠性建模与分析","authors":"Yan Li, Wei Zhang, Lirong Cui, Hongda Gao","doi":"10.1002/qre.3577","DOIUrl":null,"url":null,"abstract":"Exploring on reliability modeling and analysis on a marine equipment in a dynamic environment is a meaningful and challenging issue, because the system commonly carries out the task at sea away from land and suffers a distinct influence of environment. Thus, a reliability model of a multi‐state repairable system operating in dynamic environment is developed by introducing the background of the marine power system in this paper. The novelty of the research lies in the modeling and computing methods are relatively innovative by employing the aggregated stochastic processes, Hadamard production and matrix‐analytic method. First, the working modes of the marine power system under several different kinds of conditions are introduced. Then, the evolution of both the system states and environment are described as discrete‐time Markov chains with multiple and different transition probability matrices. The failure probability and repair probability of components are also distinct in different environments. Furthermore, some performance indexes, especially the index relevant to the environment, are derived, respectively. Finally, the conclusion is obtained by a numerical example of the marine power system, which also illustrates the validity and applicability of the proposed model.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System reliability modeling and analysis for a marine power equipment operating in a discrete‐time dynamic environment\",\"authors\":\"Yan Li, Wei Zhang, Lirong Cui, Hongda Gao\",\"doi\":\"10.1002/qre.3577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring on reliability modeling and analysis on a marine equipment in a dynamic environment is a meaningful and challenging issue, because the system commonly carries out the task at sea away from land and suffers a distinct influence of environment. Thus, a reliability model of a multi‐state repairable system operating in dynamic environment is developed by introducing the background of the marine power system in this paper. The novelty of the research lies in the modeling and computing methods are relatively innovative by employing the aggregated stochastic processes, Hadamard production and matrix‐analytic method. First, the working modes of the marine power system under several different kinds of conditions are introduced. Then, the evolution of both the system states and environment are described as discrete‐time Markov chains with multiple and different transition probability matrices. The failure probability and repair probability of components are also distinct in different environments. Furthermore, some performance indexes, especially the index relevant to the environment, are derived, respectively. Finally, the conclusion is obtained by a numerical example of the marine power system, which also illustrates the validity and applicability of the proposed model.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3577\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3577","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

由于海洋设备通常在远离陆地的海上执行任务,受环境影响明显,因此探索动态环境下海洋设备的可靠性建模和分析是一个既有意义又有挑战性的问题。因此,本文通过介绍海洋动力系统的背景,建立了动态环境下运行的多态可修复系统的可靠性模型。研究的新颖之处在于采用了聚合随机过程、哈达玛生产和矩阵分析方法,在建模和计算方法上有较大创新。首先,介绍了海洋动力系统在几种不同条件下的工作模式。然后,用具有多个不同过渡概率矩阵的离散时间马尔可夫链来描述系统状态和环境的演化。在不同环境下,组件的故障概率和修复概率也各不相同。此外,还分别得出了一些性能指标,尤其是与环境相关的指标。最后,通过一个海洋动力系统的数值实例得出结论,这也说明了所提模型的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System reliability modeling and analysis for a marine power equipment operating in a discrete‐time dynamic environment
Exploring on reliability modeling and analysis on a marine equipment in a dynamic environment is a meaningful and challenging issue, because the system commonly carries out the task at sea away from land and suffers a distinct influence of environment. Thus, a reliability model of a multi‐state repairable system operating in dynamic environment is developed by introducing the background of the marine power system in this paper. The novelty of the research lies in the modeling and computing methods are relatively innovative by employing the aggregated stochastic processes, Hadamard production and matrix‐analytic method. First, the working modes of the marine power system under several different kinds of conditions are introduced. Then, the evolution of both the system states and environment are described as discrete‐time Markov chains with multiple and different transition probability matrices. The failure probability and repair probability of components are also distinct in different environments. Furthermore, some performance indexes, especially the index relevant to the environment, are derived, respectively. Finally, the conclusion is obtained by a numerical example of the marine power system, which also illustrates the validity and applicability of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
期刊最新文献
A probabilistic uncertain linguistic approach for FMEA‐based risk assessment A resilient S2 monitoring chart with novel outlier detectors Dynamic predictive maintenance strategy for multi‐component system based on LSTM and hierarchical clustering Monitoring defects on products' surface by incorporating scan statistics into process monitoring procedures Enhanced health states recognition for electric rudder system using optimized twin support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1