{"title":"用于风电场安全的短期风功率预测金字塔残余注意力模型","authors":"Hai‐Kun Wang, Jiahui Du, Danyang Li, Feng Chen","doi":"10.1002/qre.3562","DOIUrl":null,"url":null,"abstract":"Wind power fluctuation significantly impacts the safe and stable operation of the wind farm power grid. As the installed capacity of grid‐connected wind power expands to a certain threshold, these fluctuations can detrimentally affect the wind farm's operations. Consequently, wind power prediction emerges as a critical technology for ensuring safe, stable and efficient wind power generation. To optimize power grid dispatching and enhance wind farm operation and maintenance, precise wind power prediction is essential. In this context, we introduce a joint deep learning model that integrates a compact pyramid structure with a residual attention encoder, aiming to bolster wind farm operational safety and reliability. The model employs a compact pyramid architecture to extract multi‐time scale features from the input sequence, facilitating effective information exchange across different scales and enhancing the capture of long‐term sequence dependencies. To mitigate vanishing gradients, the residual transformer encoder is applied, augmenting the original attention mechanism with a global dot product attention pathway. This approach improves the gradient descent process, making it more accessible without introducing additional hyperparameters. The model's efficacy is validated using a dataset from an actual wind farm in China. Experimental outcomes reveal a notable enhancement in wind power prediction accuracy, thereby contributing to the operational safety of wind farms.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pyramidal residual attention model of short‐term wind power forecasting for wind farm safety\",\"authors\":\"Hai‐Kun Wang, Jiahui Du, Danyang Li, Feng Chen\",\"doi\":\"10.1002/qre.3562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind power fluctuation significantly impacts the safe and stable operation of the wind farm power grid. As the installed capacity of grid‐connected wind power expands to a certain threshold, these fluctuations can detrimentally affect the wind farm's operations. Consequently, wind power prediction emerges as a critical technology for ensuring safe, stable and efficient wind power generation. To optimize power grid dispatching and enhance wind farm operation and maintenance, precise wind power prediction is essential. In this context, we introduce a joint deep learning model that integrates a compact pyramid structure with a residual attention encoder, aiming to bolster wind farm operational safety and reliability. The model employs a compact pyramid architecture to extract multi‐time scale features from the input sequence, facilitating effective information exchange across different scales and enhancing the capture of long‐term sequence dependencies. To mitigate vanishing gradients, the residual transformer encoder is applied, augmenting the original attention mechanism with a global dot product attention pathway. This approach improves the gradient descent process, making it more accessible without introducing additional hyperparameters. The model's efficacy is validated using a dataset from an actual wind farm in China. Experimental outcomes reveal a notable enhancement in wind power prediction accuracy, thereby contributing to the operational safety of wind farms.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3562\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3562","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A pyramidal residual attention model of short‐term wind power forecasting for wind farm safety
Wind power fluctuation significantly impacts the safe and stable operation of the wind farm power grid. As the installed capacity of grid‐connected wind power expands to a certain threshold, these fluctuations can detrimentally affect the wind farm's operations. Consequently, wind power prediction emerges as a critical technology for ensuring safe, stable and efficient wind power generation. To optimize power grid dispatching and enhance wind farm operation and maintenance, precise wind power prediction is essential. In this context, we introduce a joint deep learning model that integrates a compact pyramid structure with a residual attention encoder, aiming to bolster wind farm operational safety and reliability. The model employs a compact pyramid architecture to extract multi‐time scale features from the input sequence, facilitating effective information exchange across different scales and enhancing the capture of long‐term sequence dependencies. To mitigate vanishing gradients, the residual transformer encoder is applied, augmenting the original attention mechanism with a global dot product attention pathway. This approach improves the gradient descent process, making it more accessible without introducing additional hyperparameters. The model's efficacy is validated using a dataset from an actual wind farm in China. Experimental outcomes reveal a notable enhancement in wind power prediction accuracy, thereby contributing to the operational safety of wind farms.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.