离散时间小型异质神经元链网络的动态特性

Indranil Ghosh, Anjana S. Nair, Hammed Olawale Fatoyinbo, Sishu Shankar Muni
{"title":"离散时间小型异质神经元链网络的动态特性","authors":"Indranil Ghosh, Anjana S. Nair, Hammed Olawale Fatoyinbo, Sishu Shankar Muni","doi":"arxiv-2405.05675","DOIUrl":null,"url":null,"abstract":"We propose a novel nonlinear bidirectionally coupled heterogeneous chain\nnetwork whose dynamics evolve in discrete time. The backbone of the model is a\npair of popular map-based neuron models, the Chialvo and the Rulkov maps. This\nmodel is assumed to proximate the intricate dynamical properties of neurons in\nthe widely complex nervous system. The model is first realized via various\nnonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian\nmatrix, and bifurcation diagrams. We observe the coexistence of chaotic and\nperiod-4 attractors. Various codimension-1 and -2 patterns for example\nsaddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and\nfold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore,\nthe study employs two synchronization measures to quantify how the oscillators\nin the network behave in tandem with each other over a long number of\niterations. Finally, a time series analysis of the model is performed to\ninvestigate its complexity in terms of sample entropy.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical properties of a small heterogeneous chain network of neurons in discrete time\",\"authors\":\"Indranil Ghosh, Anjana S. Nair, Hammed Olawale Fatoyinbo, Sishu Shankar Muni\",\"doi\":\"arxiv-2405.05675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel nonlinear bidirectionally coupled heterogeneous chain\\nnetwork whose dynamics evolve in discrete time. The backbone of the model is a\\npair of popular map-based neuron models, the Chialvo and the Rulkov maps. This\\nmodel is assumed to proximate the intricate dynamical properties of neurons in\\nthe widely complex nervous system. The model is first realized via various\\nnonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian\\nmatrix, and bifurcation diagrams. We observe the coexistence of chaotic and\\nperiod-4 attractors. Various codimension-1 and -2 patterns for example\\nsaddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and\\nfold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore,\\nthe study employs two synchronization measures to quantify how the oscillators\\nin the network behave in tandem with each other over a long number of\\niterations. Finally, a time series analysis of the model is performed to\\ninvestigate its complexity in terms of sample entropy.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.05675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的非线性双向耦合异质链网络,其动态变化是离散的。该模型的主干是一对流行的基于图谱的神经元模型,即 Chialvo 和 Rulkov 图谱。该模型被假定为能够接近神经元在广泛复杂的神经系统中错综复杂的动态特性。该模型首先通过各种非线性分析技术实现:定点分析、相位肖像、雅各布矩阵和分岔图。我们观察到混沌吸引子和周期-4 吸引子共存。我们还探讨了例如鞍节点、周期加倍、Neimark-Sacker、双Neimark-Sacker、翻转和倍Neimark Sacker、1:1 和 1:2 共振等各种codimension-1 和 -2 模式。此外,研究还采用了两种同步测量方法,以量化网络中的振荡器在长时间迭代过程中如何相互配合。最后,还对该模型进行了时间序列分析,从样本熵的角度研究其复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamical properties of a small heterogeneous chain network of neurons in discrete time
We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1