通过深度学习算法预测非线性薛定谔方程组的位置解

K. Thulasidharan, N. Vishnu Priya, S. Monisha, M. Senthilvelan
{"title":"通过深度学习算法预测非线性薛定谔方程组的位置解","authors":"K. Thulasidharan, N. Vishnu Priya, S. Monisha, M. Senthilvelan","doi":"arxiv-2405.04968","DOIUrl":null,"url":null,"abstract":"We consider a hierarchy of nonlinear Schr\\\"{o}dinger equations (NLSEs) and\nforecast the evolution of positon solutions using a deep learning approach\ncalled Physics Informed Neural Networks (PINN). Notably, the PINN algorithm\naccurately predicts positon solutions not only in the standard NLSE but also in\nother higher order versions, including cubic, quartic and quintic NLSEs. The\nPINN approach also effectively handles two coupled NLSEs and two coupled Hirota\nequations. In addition to the above, we report exact second-order positon\nsolutions of the sextic NLSE and coupled generalized NLSE. These solutions are\nnot available in the existing literature and we construct them through\ngeneralized Darboux transformation method. Further, we utilize PINNs to\nforecast their behaviour as well. To validate PINN's accuracy, we compare the\npredicted solutions with exact solutions obtained from analytical methods. The\nresults show high fidelity and low mean squared error in the predictions\ngenerated by our PINN model.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting positon solutions of a family of Nonlinear Schrödinger equations through Deep Learning algorithm\",\"authors\":\"K. Thulasidharan, N. Vishnu Priya, S. Monisha, M. Senthilvelan\",\"doi\":\"arxiv-2405.04968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a hierarchy of nonlinear Schr\\\\\\\"{o}dinger equations (NLSEs) and\\nforecast the evolution of positon solutions using a deep learning approach\\ncalled Physics Informed Neural Networks (PINN). Notably, the PINN algorithm\\naccurately predicts positon solutions not only in the standard NLSE but also in\\nother higher order versions, including cubic, quartic and quintic NLSEs. The\\nPINN approach also effectively handles two coupled NLSEs and two coupled Hirota\\nequations. In addition to the above, we report exact second-order positon\\nsolutions of the sextic NLSE and coupled generalized NLSE. These solutions are\\nnot available in the existing literature and we construct them through\\ngeneralized Darboux transformation method. Further, we utilize PINNs to\\nforecast their behaviour as well. To validate PINN's accuracy, we compare the\\npredicted solutions with exact solutions obtained from analytical methods. The\\nresults show high fidelity and low mean squared error in the predictions\\ngenerated by our PINN model.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了非线性薛定谔方程(NLSE)的层次结构,并使用一种称为物理信息神经网络(PINN)的深度学习方法预测了正位解的演化。值得注意的是,PINN 算法不仅能准确预测标准 NLSE 的正位解,还能预测其他高阶版本的正位解,包括三次 NLSE、四次 NLSE 和五次 NLSE。PINN 方法还能有效处理两个耦合 NLSE 和两个耦合 Hirotaequations。除此之外,我们还报告了六次方 NLSE 和耦合广义 NLSE 的精确二阶位置解。现有文献中没有这些解,我们通过广义达布变换方法构建了这些解。此外,我们还利用 PINN 预测它们的行为。为了验证 PINN 的准确性,我们将预测的解与通过分析方法获得的精确解进行了比较。结果表明,我们的 PINN 模型生成的预测结果保真度高、均方误差小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting positon solutions of a family of Nonlinear Schrödinger equations through Deep Learning algorithm
We consider a hierarchy of nonlinear Schr\"{o}dinger equations (NLSEs) and forecast the evolution of positon solutions using a deep learning approach called Physics Informed Neural Networks (PINN). Notably, the PINN algorithm accurately predicts positon solutions not only in the standard NLSE but also in other higher order versions, including cubic, quartic and quintic NLSEs. The PINN approach also effectively handles two coupled NLSEs and two coupled Hirota equations. In addition to the above, we report exact second-order positon solutions of the sextic NLSE and coupled generalized NLSE. These solutions are not available in the existing literature and we construct them through generalized Darboux transformation method. Further, we utilize PINNs to forecast their behaviour as well. To validate PINN's accuracy, we compare the predicted solutions with exact solutions obtained from analytical methods. The results show high fidelity and low mean squared error in the predictions generated by our PINN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrically constrained sine-Gordon field: BPS solitons and their collisions (In)stability of symbiotic vortex-bright soliton in holographic immiscible binary superfluids Chimera state in neural network with the PID coupling Pattern formation of bulk-surface reaction-diffusion systems in a ball Designing reaction-cross-diffusion systems with Turing and wave instabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1