在模糊认知图中使用修正阈值函数改进故障模式识别

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-05-09 DOI:10.1007/s11063-024-11623-y
Manu Augustine, Om Prakash Yadav, Ashish Nayyar, Dheeraj Joshi
{"title":"在模糊认知图中使用修正阈值函数改进故障模式识别","authors":"Manu Augustine, Om Prakash Yadav, Ashish Nayyar, Dheeraj Joshi","doi":"10.1007/s11063-024-11623-y","DOIUrl":null,"url":null,"abstract":"<p>Fuzzy cognitive maps (FCMs) provide a rapid and efficient approach for system modeling and simulation. The literature demonstrates numerous successful applications of FCMs in identifying failure modes. The standard process of failure mode identification using FCMs involves monitoring crucial concept/node values for excesses. Threshold functions are used to limit the value of nodes within a pre-specified range, which is usually [0, 1] or [-1, + 1]. However, traditional FCMs using the <i>tanh</i> threshold function possess two crucial drawbacks for this particular.Purpose(i) a tendency to reduce the values of state vector components, and (ii) the potential inability to reach a limit state with clearly identifiable failure states. The reason for this is the inherent mathematical nature of the <i>tanh</i> function in being asymptotic to the horizontal line demarcating the edge of the specified range. To overcome these limitations, this paper introduces a novel modified <i>tanh</i> threshold function that effectively addresses both issues.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of a Modified Threshold Function in Fuzzy Cognitive Maps for Improved Failure Mode Identification\",\"authors\":\"Manu Augustine, Om Prakash Yadav, Ashish Nayyar, Dheeraj Joshi\",\"doi\":\"10.1007/s11063-024-11623-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fuzzy cognitive maps (FCMs) provide a rapid and efficient approach for system modeling and simulation. The literature demonstrates numerous successful applications of FCMs in identifying failure modes. The standard process of failure mode identification using FCMs involves monitoring crucial concept/node values for excesses. Threshold functions are used to limit the value of nodes within a pre-specified range, which is usually [0, 1] or [-1, + 1]. However, traditional FCMs using the <i>tanh</i> threshold function possess two crucial drawbacks for this particular.Purpose(i) a tendency to reduce the values of state vector components, and (ii) the potential inability to reach a limit state with clearly identifiable failure states. The reason for this is the inherent mathematical nature of the <i>tanh</i> function in being asymptotic to the horizontal line demarcating the edge of the specified range. To overcome these limitations, this paper introduces a novel modified <i>tanh</i> threshold function that effectively addresses both issues.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11623-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11623-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

模糊认知图(FCM)为系统建模和仿真提供了一种快速高效的方法。文献显示,模糊认知图在故障模式识别方面的成功应用不胜枚举。使用 FCM 进行故障模式识别的标准流程包括监测关键概念/节点值是否超标。阈值函数用于将节点值限制在预先指定的范围内,该范围通常为[0, 1]或[-1, + 1]。然而,使用 tanh 阈值函数的传统 FCM 对这一特定目的而言有两个关键缺点:(i) 容易降低状态向量分量的值,(ii) 可能无法达到具有清晰可辨故障状态的极限状态。究其原因,是 tanh 函数的固有数学性质,即它与划定指定范围边缘的水平线近似。为了克服这些局限性,本文引入了一种新的修正 tanh 阈值函数,以有效解决这两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of a Modified Threshold Function in Fuzzy Cognitive Maps for Improved Failure Mode Identification

Fuzzy cognitive maps (FCMs) provide a rapid and efficient approach for system modeling and simulation. The literature demonstrates numerous successful applications of FCMs in identifying failure modes. The standard process of failure mode identification using FCMs involves monitoring crucial concept/node values for excesses. Threshold functions are used to limit the value of nodes within a pre-specified range, which is usually [0, 1] or [-1, + 1]. However, traditional FCMs using the tanh threshold function possess two crucial drawbacks for this particular.Purpose(i) a tendency to reduce the values of state vector components, and (ii) the potential inability to reach a limit state with clearly identifiable failure states. The reason for this is the inherent mathematical nature of the tanh function in being asymptotic to the horizontal line demarcating the edge of the specified range. To overcome these limitations, this paper introduces a novel modified tanh threshold function that effectively addresses both issues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1