基于前向回波状态卷积网络的时间序列分类

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-05-11 DOI:10.1007/s11063-024-11449-8
Lei Xia, Jianfeng Tang, Guangli Li, Jun Fu, Shukai Duan, Lidan Wang
{"title":"基于前向回波状态卷积网络的时间序列分类","authors":"Lei Xia, Jianfeng Tang, Guangli Li, Jun Fu, Shukai Duan, Lidan Wang","doi":"10.1007/s11063-024-11449-8","DOIUrl":null,"url":null,"abstract":"<p>The Echo state network (ESN) is an efficient recurrent neural network that has achieved good results in time series prediction tasks. Still, its application in time series classification tasks has yet to develop fully. In this study, we work on the time series classification problem based on echo state networks. We propose a new framework called forward echo state convolutional network (FESCN). It consists of two parts, the encoder and the decoder, where the encoder part is composed of a forward topology echo state network (FT-ESN), and the decoder part mainly consists of a convolutional layer and a max-pooling layer. We apply the proposed network framework to the univariate time series dataset UCR and compare it with six traditional methods and four neural network models. The experimental findings demonstrate that FESCN outperforms other methods in terms of overall classification accuracy. Additionally, we investigated the impact of reservoir size on network performance and observed that the optimal classification results were obtained when the reservoir size was set to 32. Finally, we investigated the performance of the network under noise interference, and the results show that FESCN has a more stable network performance compared to EMN (echo memory network).</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"49 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Classification Based on Forward Echo State Convolution Network\",\"authors\":\"Lei Xia, Jianfeng Tang, Guangli Li, Jun Fu, Shukai Duan, Lidan Wang\",\"doi\":\"10.1007/s11063-024-11449-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Echo state network (ESN) is an efficient recurrent neural network that has achieved good results in time series prediction tasks. Still, its application in time series classification tasks has yet to develop fully. In this study, we work on the time series classification problem based on echo state networks. We propose a new framework called forward echo state convolutional network (FESCN). It consists of two parts, the encoder and the decoder, where the encoder part is composed of a forward topology echo state network (FT-ESN), and the decoder part mainly consists of a convolutional layer and a max-pooling layer. We apply the proposed network framework to the univariate time series dataset UCR and compare it with six traditional methods and four neural network models. The experimental findings demonstrate that FESCN outperforms other methods in terms of overall classification accuracy. Additionally, we investigated the impact of reservoir size on network performance and observed that the optimal classification results were obtained when the reservoir size was set to 32. Finally, we investigated the performance of the network under noise interference, and the results show that FESCN has a more stable network performance compared to EMN (echo memory network).</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11449-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11449-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

回声状态网络(ESN)是一种高效的递归神经网络,在时间序列预测任务中取得了良好的效果。然而,它在时间序列分类任务中的应用还有待充分发展。在本研究中,我们致力于研究基于回波状态网络的时间序列分类问题。我们提出了一种名为前向回波状态卷积网络(FESCN)的新框架。它由编码器和解码器两部分组成,其中编码器部分由正向拓扑回声状态网络(FT-ESN)组成,解码器部分主要由卷积层和最大池化层组成。我们将提出的网络框架应用于单变量时间序列数据集 UCR,并与六种传统方法和四种神经网络模型进行了比较。实验结果表明,FESCN 在整体分类准确性方面优于其他方法。此外,我们还研究了储层规模对网络性能的影响,发现当储层规模设置为 32 时,分类结果最佳。最后,我们还研究了网络在噪声干扰下的性能,结果表明与 EMN(回声记忆网络)相比,FESCN 的网络性能更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Series Classification Based on Forward Echo State Convolution Network

The Echo state network (ESN) is an efficient recurrent neural network that has achieved good results in time series prediction tasks. Still, its application in time series classification tasks has yet to develop fully. In this study, we work on the time series classification problem based on echo state networks. We propose a new framework called forward echo state convolutional network (FESCN). It consists of two parts, the encoder and the decoder, where the encoder part is composed of a forward topology echo state network (FT-ESN), and the decoder part mainly consists of a convolutional layer and a max-pooling layer. We apply the proposed network framework to the univariate time series dataset UCR and compare it with six traditional methods and four neural network models. The experimental findings demonstrate that FESCN outperforms other methods in terms of overall classification accuracy. Additionally, we investigated the impact of reservoir size on network performance and observed that the optimal classification results were obtained when the reservoir size was set to 32. Finally, we investigated the performance of the network under noise interference, and the results show that FESCN has a more stable network performance compared to EMN (echo memory network).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1