Mandy R. Lewis, Silvana Ovaitt, Byron McDanold, Chris Deline, Karin Hinzer
{"title":"人工地面反射器的尺寸和位置对单轴跟踪双面光伏发电系统的发电量和经济性的影响","authors":"Mandy R. Lewis, Silvana Ovaitt, Byron McDanold, Chris Deline, Karin Hinzer","doi":"10.1002/pip.3811","DOIUrl":null,"url":null,"abstract":"<p>Artificial ground reflectors improve bifacial energy yield by increasing both front and rear-incident irradiance. Studies have demonstrated an increase in energy yield due to the addition of artificial reflectors; however, they have not addressed the effect of varying reflector dimensions and placement on system performance and the impact of these parameters on the reflectors' financial viability. We studied the effect of high albedo (70% reflective) artificial reflectors on single-axis-tracked bifacial photovoltaic systems through ray-trace modeling and field measurements. In the field, we tested a range of reflector configurations by varying reflector size and placement and demonstrated that reflectors increased daily energy yield up to 6.2% relative to natural albedo for PERC modules. To confirm the accuracy of our model, we compared modeled and measured power and found a root mean square error (RMSE) of 5.4% on an hourly basis. We modeled a typical meteorological year in Golden, Colorado, to demonstrate the effects of artificial reflectors under a wide range of operating conditions. Seventy percent reflective material can increase total incident irradiance by 1.9%–8.6% and total energy yield by 0.9%–4.5% annually after clipping is considered with a DC–AC ratio of 1.2. Clipping has a significant effect on reflector impact and must be included when assessing reflector viability because it reduces reflector energy gain. We calculated a maximum viable cost for these improvements of up to $2.50–4.60/m<sup>2</sup>, including both material and installation, in Golden. We expanded our analysis to cover a latitude range of 32–48°N and demonstrated that higher-latitude installations with lower energy yield and higher diffuse irradiance content can support higher reflector costs. In both modeling and field tests, and for all locations, the ideal placement of the reflectors was found to be directly underneath the module due to the optimized rear irradiance increase.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 10","pages":"675-686"},"PeriodicalIF":8.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3811","citationCount":"0","resultStr":"{\"title\":\"Artificial ground reflector size and position effects on energy yield and economics of single-axis-tracked bifacial photovoltaics\",\"authors\":\"Mandy R. Lewis, Silvana Ovaitt, Byron McDanold, Chris Deline, Karin Hinzer\",\"doi\":\"10.1002/pip.3811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial ground reflectors improve bifacial energy yield by increasing both front and rear-incident irradiance. Studies have demonstrated an increase in energy yield due to the addition of artificial reflectors; however, they have not addressed the effect of varying reflector dimensions and placement on system performance and the impact of these parameters on the reflectors' financial viability. We studied the effect of high albedo (70% reflective) artificial reflectors on single-axis-tracked bifacial photovoltaic systems through ray-trace modeling and field measurements. In the field, we tested a range of reflector configurations by varying reflector size and placement and demonstrated that reflectors increased daily energy yield up to 6.2% relative to natural albedo for PERC modules. To confirm the accuracy of our model, we compared modeled and measured power and found a root mean square error (RMSE) of 5.4% on an hourly basis. We modeled a typical meteorological year in Golden, Colorado, to demonstrate the effects of artificial reflectors under a wide range of operating conditions. Seventy percent reflective material can increase total incident irradiance by 1.9%–8.6% and total energy yield by 0.9%–4.5% annually after clipping is considered with a DC–AC ratio of 1.2. Clipping has a significant effect on reflector impact and must be included when assessing reflector viability because it reduces reflector energy gain. We calculated a maximum viable cost for these improvements of up to $2.50–4.60/m<sup>2</sup>, including both material and installation, in Golden. We expanded our analysis to cover a latitude range of 32–48°N and demonstrated that higher-latitude installations with lower energy yield and higher diffuse irradiance content can support higher reflector costs. In both modeling and field tests, and for all locations, the ideal placement of the reflectors was found to be directly underneath the module due to the optimized rear irradiance increase.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 10\",\"pages\":\"675-686\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3811\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3811\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3811","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Artificial ground reflector size and position effects on energy yield and economics of single-axis-tracked bifacial photovoltaics
Artificial ground reflectors improve bifacial energy yield by increasing both front and rear-incident irradiance. Studies have demonstrated an increase in energy yield due to the addition of artificial reflectors; however, they have not addressed the effect of varying reflector dimensions and placement on system performance and the impact of these parameters on the reflectors' financial viability. We studied the effect of high albedo (70% reflective) artificial reflectors on single-axis-tracked bifacial photovoltaic systems through ray-trace modeling and field measurements. In the field, we tested a range of reflector configurations by varying reflector size and placement and demonstrated that reflectors increased daily energy yield up to 6.2% relative to natural albedo for PERC modules. To confirm the accuracy of our model, we compared modeled and measured power and found a root mean square error (RMSE) of 5.4% on an hourly basis. We modeled a typical meteorological year in Golden, Colorado, to demonstrate the effects of artificial reflectors under a wide range of operating conditions. Seventy percent reflective material can increase total incident irradiance by 1.9%–8.6% and total energy yield by 0.9%–4.5% annually after clipping is considered with a DC–AC ratio of 1.2. Clipping has a significant effect on reflector impact and must be included when assessing reflector viability because it reduces reflector energy gain. We calculated a maximum viable cost for these improvements of up to $2.50–4.60/m2, including both material and installation, in Golden. We expanded our analysis to cover a latitude range of 32–48°N and demonstrated that higher-latitude installations with lower energy yield and higher diffuse irradiance content can support higher reflector costs. In both modeling and field tests, and for all locations, the ideal placement of the reflectors was found to be directly underneath the module due to the optimized rear irradiance increase.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.