{"title":"全息 QCD 中作为基本超形式结构的色彩对称和约束","authors":"Guy F. de Téramond, Stanley J. Brodsky","doi":"10.1142/s0217751x24410070","DOIUrl":null,"url":null,"abstract":"<p>Dedicated to the memory of our colleague, Harald Fritzsch, who, together with Murray Gell-Mann, introduced the color quantum number as the exact symmetry responsible for the strong interaction, thus establishing quantum chromodynamics (QCD) as a fundamental non-Abelian gauge theory. A basic understanding of hadron properties, however, such as confinement and the emergence of a mass scale, from first principles QCD has remained elusive: Hadronic characteristics are not explicit properties of the QCD Lagrangian and perturbative QCD, so successful in the large transverse momentum domain, is not applicable at large distances. In this article, we shall examine how this daunting obstacle is overcome in holographic QCD with the introduction of a superconformal symmetry in anti de Sitter (AdS) space which is responsible for confinement and the introduction of a mass scale within the superconformal group. When mapped to light-front coordinates in physical spacetime, this approach incorporates supersymmetric relations between the Regge trajectories of meson, baryon and tetraquark states which can be visualized in terms of specific <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>U</mi><msub><mrow><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> color representations of quarks. We will also briefly discuss here the implications of holographic models for QCD color transparency in view of the present experimental interest.</p>","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":"25 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color symmetry and confinement as an underlying superconformal structure in holographic QCD\",\"authors\":\"Guy F. de Téramond, Stanley J. Brodsky\",\"doi\":\"10.1142/s0217751x24410070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dedicated to the memory of our colleague, Harald Fritzsch, who, together with Murray Gell-Mann, introduced the color quantum number as the exact symmetry responsible for the strong interaction, thus establishing quantum chromodynamics (QCD) as a fundamental non-Abelian gauge theory. A basic understanding of hadron properties, however, such as confinement and the emergence of a mass scale, from first principles QCD has remained elusive: Hadronic characteristics are not explicit properties of the QCD Lagrangian and perturbative QCD, so successful in the large transverse momentum domain, is not applicable at large distances. In this article, we shall examine how this daunting obstacle is overcome in holographic QCD with the introduction of a superconformal symmetry in anti de Sitter (AdS) space which is responsible for confinement and the introduction of a mass scale within the superconformal group. When mapped to light-front coordinates in physical spacetime, this approach incorporates supersymmetric relations between the Regge trajectories of meson, baryon and tetraquark states which can be visualized in terms of specific <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><mi>U</mi><msub><mrow><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span><span></span> color representations of quarks. We will also briefly discuss here the implications of holographic models for QCD color transparency in view of the present experimental interest.</p>\",\"PeriodicalId\":50309,\"journal\":{\"name\":\"International Journal of Modern Physics a\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics a\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217751x24410070\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217751x24410070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Color symmetry and confinement as an underlying superconformal structure in holographic QCD
Dedicated to the memory of our colleague, Harald Fritzsch, who, together with Murray Gell-Mann, introduced the color quantum number as the exact symmetry responsible for the strong interaction, thus establishing quantum chromodynamics (QCD) as a fundamental non-Abelian gauge theory. A basic understanding of hadron properties, however, such as confinement and the emergence of a mass scale, from first principles QCD has remained elusive: Hadronic characteristics are not explicit properties of the QCD Lagrangian and perturbative QCD, so successful in the large transverse momentum domain, is not applicable at large distances. In this article, we shall examine how this daunting obstacle is overcome in holographic QCD with the introduction of a superconformal symmetry in anti de Sitter (AdS) space which is responsible for confinement and the introduction of a mass scale within the superconformal group. When mapped to light-front coordinates in physical spacetime, this approach incorporates supersymmetric relations between the Regge trajectories of meson, baryon and tetraquark states which can be visualized in terms of specific color representations of quarks. We will also briefly discuss here the implications of holographic models for QCD color transparency in view of the present experimental interest.
期刊介绍:
Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.