{"title":"基于相位共轭反馈混沌注入系统的安全通信技术研究","authors":"Jingbo Fu, Penghua Mu","doi":"10.1088/2040-8986/ad44a8","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental scheme using optical method instead of phase conjugate light. We have implemented a phase conjugate feedback semiconductor laser chaotic system based on the four-wave mixing principle through an established optical fiber experimental platform. Based on the high-dimensional wideband chaotic signals generated by this system, we propose a two-channel secure communication scheme based on phase conjugate feedback, and analyze its delay hiding mechanism and synchronization characteristics. The effects of parameter mismatch and injection strength on synchronization performance and communication quality are also considered. Our experimental results show that by adjusting the injection strength and frequency detuning parameters, the system can produce signals with time-delay signature completely suppressed, thus achieving high-quality and high-security communications.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on secure communication technology based on phase conjugate feedback chaotic injection system\",\"authors\":\"Jingbo Fu, Penghua Mu\",\"doi\":\"10.1088/2040-8986/ad44a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental scheme using optical method instead of phase conjugate light. We have implemented a phase conjugate feedback semiconductor laser chaotic system based on the four-wave mixing principle through an established optical fiber experimental platform. Based on the high-dimensional wideband chaotic signals generated by this system, we propose a two-channel secure communication scheme based on phase conjugate feedback, and analyze its delay hiding mechanism and synchronization characteristics. The effects of parameter mismatch and injection strength on synchronization performance and communication quality are also considered. Our experimental results show that by adjusting the injection strength and frequency detuning parameters, the system can produce signals with time-delay signature completely suppressed, thus achieving high-quality and high-security communications.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad44a8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad44a8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Research on secure communication technology based on phase conjugate feedback chaotic injection system
This paper presents an experimental scheme using optical method instead of phase conjugate light. We have implemented a phase conjugate feedback semiconductor laser chaotic system based on the four-wave mixing principle through an established optical fiber experimental platform. Based on the high-dimensional wideband chaotic signals generated by this system, we propose a two-channel secure communication scheme based on phase conjugate feedback, and analyze its delay hiding mechanism and synchronization characteristics. The effects of parameter mismatch and injection strength on synchronization performance and communication quality are also considered. Our experimental results show that by adjusting the injection strength and frequency detuning parameters, the system can produce signals with time-delay signature completely suppressed, thus achieving high-quality and high-security communications.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.