Yangzhou Xie, Yi Yang, Yu Tian, Zhimin Liu, Zhigang Xu, Wei Jiang, Zhihua Liu, Xiaoxi Si
{"title":"利用 HS-SPME 与 GC-MS 联用分析七种萜类化合物,对不同茶叶进行鉴定和分类","authors":"Yangzhou Xie, Yi Yang, Yu Tian, Zhimin Liu, Zhigang Xu, Wei Jiang, Zhihua Liu, Xiaoxi Si","doi":"10.2174/0115734110301044240426170020","DOIUrl":null,"url":null,"abstract":"Background: Terpenoids are essential aroma substances in teas, and their concentration brings various characteristics to different teas. Therefore, developing a simple and stable method is necessary for distinguishing tea categories. Objective: In previous studies, more attention was paid to non-chiral isomers of terpenes due to the challenges of separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas. objective: In previous studies, more attention was paid to non-chiral isomers of terpeniods due to the challenges with separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas. Methods: A method utilizing headspace solid-phase microextraction coupled with gas chromatography- mass spectrometry was used to isolate and analyze 7 terpenoid compounds. After optimized conditions, the BGB-176 chiral column and the PDMS/DVB fiber were selected for subsequent analysis. Results: This method has a good linear range of 0.1-200 mg/L, and its linear correlation coefficients are between 0.9974 and 0.9994, and the limit of detection and the limit of quantification is 0.02–0.03 and 0.06–0.09 mg/L, respectively. Only five terpenoid substances were detected in a total of 15 tea samples. Furthermore, In the detection of carvon and α-ionone optical isomers, the S isomer was mainly detected. Conclusions: An effective approach was developed to separate and analyze 7 terpenoid compounds in natural and synthetic teas. Meanwhile, 15 tea samples can be identified and classified using principal component analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Seven Terpenoids by HS-SPME Coupled with GC-MS for the Identification and Classification of Different Teas\",\"authors\":\"Yangzhou Xie, Yi Yang, Yu Tian, Zhimin Liu, Zhigang Xu, Wei Jiang, Zhihua Liu, Xiaoxi Si\",\"doi\":\"10.2174/0115734110301044240426170020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Terpenoids are essential aroma substances in teas, and their concentration brings various characteristics to different teas. Therefore, developing a simple and stable method is necessary for distinguishing tea categories. Objective: In previous studies, more attention was paid to non-chiral isomers of terpenes due to the challenges of separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas. objective: In previous studies, more attention was paid to non-chiral isomers of terpeniods due to the challenges with separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas. Methods: A method utilizing headspace solid-phase microextraction coupled with gas chromatography- mass spectrometry was used to isolate and analyze 7 terpenoid compounds. After optimized conditions, the BGB-176 chiral column and the PDMS/DVB fiber were selected for subsequent analysis. Results: This method has a good linear range of 0.1-200 mg/L, and its linear correlation coefficients are between 0.9974 and 0.9994, and the limit of detection and the limit of quantification is 0.02–0.03 and 0.06–0.09 mg/L, respectively. Only five terpenoid substances were detected in a total of 15 tea samples. Furthermore, In the detection of carvon and α-ionone optical isomers, the S isomer was mainly detected. Conclusions: An effective approach was developed to separate and analyze 7 terpenoid compounds in natural and synthetic teas. Meanwhile, 15 tea samples can be identified and classified using principal component analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110301044240426170020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110301044240426170020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of Seven Terpenoids by HS-SPME Coupled with GC-MS for the Identification and Classification of Different Teas
Background: Terpenoids are essential aroma substances in teas, and their concentration brings various characteristics to different teas. Therefore, developing a simple and stable method is necessary for distinguishing tea categories. Objective: In previous studies, more attention was paid to non-chiral isomers of terpenes due to the challenges of separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas. objective: In previous studies, more attention was paid to non-chiral isomers of terpeniods due to the challenges with separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas. Methods: A method utilizing headspace solid-phase microextraction coupled with gas chromatography- mass spectrometry was used to isolate and analyze 7 terpenoid compounds. After optimized conditions, the BGB-176 chiral column and the PDMS/DVB fiber were selected for subsequent analysis. Results: This method has a good linear range of 0.1-200 mg/L, and its linear correlation coefficients are between 0.9974 and 0.9994, and the limit of detection and the limit of quantification is 0.02–0.03 and 0.06–0.09 mg/L, respectively. Only five terpenoid substances were detected in a total of 15 tea samples. Furthermore, In the detection of carvon and α-ionone optical isomers, the S isomer was mainly detected. Conclusions: An effective approach was developed to separate and analyze 7 terpenoid compounds in natural and synthetic teas. Meanwhile, 15 tea samples can be identified and classified using principal component analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.