亨特-克罗斯利模型的稳定开关力控制

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Control Automation and Systems Pub Date : 2024-05-09 DOI:10.1007/s12555-023-0426-3
Yun-Jae Yang, Jeong-Un Nam, Tae-Woong Yoon
{"title":"亨特-克罗斯利模型的稳定开关力控制","authors":"Yun-Jae Yang, Jeong-Un Nam, Tae-Woong Yoon","doi":"10.1007/s12555-023-0426-3","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a switching control scheme for the Hunt-Crossley model, which represents the behavior of contact between two surfaces in mechanical systems. The scheme comprises a PID force feedback controller and a position/velocity feedback controller. Its objective is to apply the desired amount of pressure while ensuring closed-loop stability. The PID force feedback controller operates in contact mode, while the position/velocity feedback controller operates in non-contact mode. For the PID control, a non-quadratic Lyapunov function is devised together with an invariant domain of attraction within the contact region, including the equilibrium steady state. For the non-contact region where the state trajectories stay only temporarily, the position/velocity feedback control is equipped with a disturbance compensation term on the basis of a Lyapunov min-max approach, which leads to a quadratic Lyapunov function. Notice the two different ways of achieving infinite gain operation for handling modeling errors and disturbances: infinite gain at DC, resulting from integral action in the contact mode, and infinite gain at equilibrium, resulting from the use of a signum function in the non-contact mode. The asymptotic stability of the overall switching control system is proven by demonstrating that the two Lyapunov functions defined in the contact and non-contact regions satisfy certain decreasing properties. Simulations confirm that the applied force closely tracks the desired value in the presence of a DC disturbance and model uncertainty.</p>","PeriodicalId":54965,"journal":{"name":"International Journal of Control Automation and Systems","volume":"41 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Switching Force Control for the Hunt-Crossley Model\",\"authors\":\"Yun-Jae Yang, Jeong-Un Nam, Tae-Woong Yoon\",\"doi\":\"10.1007/s12555-023-0426-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a switching control scheme for the Hunt-Crossley model, which represents the behavior of contact between two surfaces in mechanical systems. The scheme comprises a PID force feedback controller and a position/velocity feedback controller. Its objective is to apply the desired amount of pressure while ensuring closed-loop stability. The PID force feedback controller operates in contact mode, while the position/velocity feedback controller operates in non-contact mode. For the PID control, a non-quadratic Lyapunov function is devised together with an invariant domain of attraction within the contact region, including the equilibrium steady state. For the non-contact region where the state trajectories stay only temporarily, the position/velocity feedback control is equipped with a disturbance compensation term on the basis of a Lyapunov min-max approach, which leads to a quadratic Lyapunov function. Notice the two different ways of achieving infinite gain operation for handling modeling errors and disturbances: infinite gain at DC, resulting from integral action in the contact mode, and infinite gain at equilibrium, resulting from the use of a signum function in the non-contact mode. The asymptotic stability of the overall switching control system is proven by demonstrating that the two Lyapunov functions defined in the contact and non-contact regions satisfy certain decreasing properties. Simulations confirm that the applied force closely tracks the desired value in the presence of a DC disturbance and model uncertainty.</p>\",\"PeriodicalId\":54965,\"journal\":{\"name\":\"International Journal of Control Automation and Systems\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Control Automation and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12555-023-0426-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Control Automation and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12555-023-0426-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对 Hunt-Crossley 模型提出了一种开关控制方案,该模型表示了机械系统中两个表面之间的接触行为。该方案由一个 PID 力反馈控制器和一个位置/速度反馈控制器组成。其目标是施加所需的压力,同时确保闭环稳定性。PID 力反馈控制器在接触模式下工作,而位置/速度反馈控制器在非接触模式下工作。对于 PID 控制,设计了一个非二次方 Lyapunov 函数,并在接触区域(包括平衡稳定状态)内设计了一个吸引力不变域。对于状态轨迹只是暂时停留的非接触区域,位置/速度反馈控制在 Lyapunov 最小-最大方法的基础上配备了扰动补偿项,从而产生了二次型 Lyapunov 函数。请注意在处理建模误差和干扰时实现无限增益操作的两种不同方式:直流时的无限增益来自于接触模式下的积分作用,而平衡时的无限增益则来自于非接触模式下的符号函数。通过证明在接触和非接触区域定义的两个 Lyapunov 函数满足某些递减特性,证明了整个开关控制系统的渐进稳定性。仿真证实,在存在直流干扰和模型不确定性的情况下,施加的力能密切跟踪预期值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilizing Switching Force Control for the Hunt-Crossley Model

This paper proposes a switching control scheme for the Hunt-Crossley model, which represents the behavior of contact between two surfaces in mechanical systems. The scheme comprises a PID force feedback controller and a position/velocity feedback controller. Its objective is to apply the desired amount of pressure while ensuring closed-loop stability. The PID force feedback controller operates in contact mode, while the position/velocity feedback controller operates in non-contact mode. For the PID control, a non-quadratic Lyapunov function is devised together with an invariant domain of attraction within the contact region, including the equilibrium steady state. For the non-contact region where the state trajectories stay only temporarily, the position/velocity feedback control is equipped with a disturbance compensation term on the basis of a Lyapunov min-max approach, which leads to a quadratic Lyapunov function. Notice the two different ways of achieving infinite gain operation for handling modeling errors and disturbances: infinite gain at DC, resulting from integral action in the contact mode, and infinite gain at equilibrium, resulting from the use of a signum function in the non-contact mode. The asymptotic stability of the overall switching control system is proven by demonstrating that the two Lyapunov functions defined in the contact and non-contact regions satisfy certain decreasing properties. Simulations confirm that the applied force closely tracks the desired value in the presence of a DC disturbance and model uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Control Automation and Systems
International Journal of Control Automation and Systems 工程技术-自动化与控制系统
CiteScore
5.80
自引率
21.90%
发文量
343
审稿时长
8.7 months
期刊介绍: International Journal of Control, Automation and Systems is a joint publication of the Institute of Control, Robotics and Systems (ICROS) and the Korean Institute of Electrical Engineers (KIEE). The journal covers three closly-related research areas including control, automation, and systems. The technical areas include Control Theory Control Applications Robotics and Automation Intelligent and Information Systems The Journal addresses research areas focused on control, automation, and systems in electrical, mechanical, aerospace, chemical, and industrial engineering in order to create a strong synergy effect throughout the interdisciplinary research areas.
期刊最新文献
The Dynamical Model and the Slithering Controller of Continuous Snakelike Robot on Smooth Surface Adaptive Back-stepping Control of Servo Systems With Asymmetric Dead Zone Optimal Stealthy Attack With Side Information Under the Energy Constraint on Remote State Estimation Finite-time Stabilization of Fractional-order Impulsive Switched Systems With Saturated Control Input Tracking Control Design for a Bilinear Control System With Unstable and Uncertain Internal Dynamics Using Adaptive Backstepping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1