{"title":"旋转翼无人机能耗模型","authors":"Hongqi Li, Zhuopeng Zhan, Zhiqi Wang","doi":"10.1002/rob.22359","DOIUrl":null,"url":null,"abstract":"<p>With technological advancement, the use of drones in delivery systems has become increasingly feasible. Many companies have developed rotary-wing drone (RWD) technologies for parcel delivery. At present, the limited endurance is the main disadvantage of RWD delivery. The energy consumption of RWDs must be carefully managed, and it is necessary to develop an effective energy-consumption model to support RWD flight planning. Because the interaction between the forces on the RWD and its flying environment is very complex, it is challenging to estimate accurately the RWD energy consumption. This study summarizes several energy-consumption models proposed in the literature, then we develop an RWD energy-consumption model (called the integrated model) based on analyzing the dynamic equilibrium of forces and power consumption in flight phases (including climb, descent, hover, and horizontal flight). Computational experiments involving several commercial RWDs indicate that the integrated model is more effective than several models in the literature. In the case where an RWD completed one flight segment, on average, 87.63% of the battery capacity was consumed in the horizontal flight phase. We also analyzed the effects of the total mass and horizontal airspeed on the RWD endurance and found that a larger mass corresponded to shorter endurance, and in the experimental range of the horizontal airspeed, a higher horizontal airspeed corresponded to longer endurance. Moreover, the total mass affected the RWD endurance more significantly than the horizontal airspeed.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1940-1959"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-consumption model for rotary-wing drones\",\"authors\":\"Hongqi Li, Zhuopeng Zhan, Zhiqi Wang\",\"doi\":\"10.1002/rob.22359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With technological advancement, the use of drones in delivery systems has become increasingly feasible. Many companies have developed rotary-wing drone (RWD) technologies for parcel delivery. At present, the limited endurance is the main disadvantage of RWD delivery. The energy consumption of RWDs must be carefully managed, and it is necessary to develop an effective energy-consumption model to support RWD flight planning. Because the interaction between the forces on the RWD and its flying environment is very complex, it is challenging to estimate accurately the RWD energy consumption. This study summarizes several energy-consumption models proposed in the literature, then we develop an RWD energy-consumption model (called the integrated model) based on analyzing the dynamic equilibrium of forces and power consumption in flight phases (including climb, descent, hover, and horizontal flight). Computational experiments involving several commercial RWDs indicate that the integrated model is more effective than several models in the literature. In the case where an RWD completed one flight segment, on average, 87.63% of the battery capacity was consumed in the horizontal flight phase. We also analyzed the effects of the total mass and horizontal airspeed on the RWD endurance and found that a larger mass corresponded to shorter endurance, and in the experimental range of the horizontal airspeed, a higher horizontal airspeed corresponded to longer endurance. Moreover, the total mass affected the RWD endurance more significantly than the horizontal airspeed.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 6\",\"pages\":\"1940-1959\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22359\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22359","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
With technological advancement, the use of drones in delivery systems has become increasingly feasible. Many companies have developed rotary-wing drone (RWD) technologies for parcel delivery. At present, the limited endurance is the main disadvantage of RWD delivery. The energy consumption of RWDs must be carefully managed, and it is necessary to develop an effective energy-consumption model to support RWD flight planning. Because the interaction between the forces on the RWD and its flying environment is very complex, it is challenging to estimate accurately the RWD energy consumption. This study summarizes several energy-consumption models proposed in the literature, then we develop an RWD energy-consumption model (called the integrated model) based on analyzing the dynamic equilibrium of forces and power consumption in flight phases (including climb, descent, hover, and horizontal flight). Computational experiments involving several commercial RWDs indicate that the integrated model is more effective than several models in the literature. In the case where an RWD completed one flight segment, on average, 87.63% of the battery capacity was consumed in the horizontal flight phase. We also analyzed the effects of the total mass and horizontal airspeed on the RWD endurance and found that a larger mass corresponded to shorter endurance, and in the experimental range of the horizontal airspeed, a higher horizontal airspeed corresponded to longer endurance. Moreover, the total mass affected the RWD endurance more significantly than the horizontal airspeed.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.