面向非平面环境的开源机器人定位系统

IF 4.2 2区 计算机科学 Q2 ROBOTICS Journal of Field Robotics Pub Date : 2024-05-07 DOI:10.1002/rob.22353
Francisco Martín Rico, José Miguel Guerrero Hernández, Rodrigo Pérez-Rodríguez, Juan Diego Peña-Narvaez, Alberto García Gómez-Jacinto
{"title":"面向非平面环境的开源机器人定位系统","authors":"Francisco Martín Rico,&nbsp;José Miguel Guerrero Hernández,&nbsp;Rodrigo Pérez-Rodríguez,&nbsp;Juan Diego Peña-Narvaez,&nbsp;Alberto García Gómez-Jacinto","doi":"10.1002/rob.22353","DOIUrl":null,"url":null,"abstract":"<p>The operational environments in which a mobile robot executes its missions often exhibit nonflat terrain characteristics, encompassing outdoor and indoor settings featuring ramps and slopes. In such scenarios, the conventional methodologies employed for localization encounter novel challenges and limitations. This study delineates a localization framework incorporating ground elevation and incline considerations, deviating from traditional two-dimensional localization paradigms that may falter in such contexts. In our proposed approach, the map encompasses elevation and spatial occupancy information, employing Gridmaps and Octomaps. At the same time, the perception model is designed to accommodate the robot's inclined orientation and the potential presence of ground as an obstacle, besides usual structural and dynamic obstacles. We provide an implementation of our approach fully working with Nav2, ready to replace the baseline Adaptative Monte Carlo Localization (AMCL) approach when the robot is in nonplanar environments. Our methodology was rigorously tested in both simulated environments and through practical application on actual robots, including the Tiago and Summit XL models, across various settings ranging from indoor and outdoor to flat and uneven terrains. Demonstrating exceptional precision, our approach yielded error margins below 10 cm and 0.05 radians in indoor settings and less than 1.0 m in extensive outdoor routes. While our results exhibit a slight improvement over AMCL in indoor environments, the enhancement in performance is significantly more pronounced when compared to three-dimensional simultaneous localization and mapping algorithms. This underscores the considerable robustness and efficiency of our approach, positioning it as an effective strategy for mobile robots tasked with navigating expansive and intricate indoor/outdoor environments.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1922-1939"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22353","citationCount":"0","resultStr":"{\"title\":\"Open source robot localization for nonplanar environments\",\"authors\":\"Francisco Martín Rico,&nbsp;José Miguel Guerrero Hernández,&nbsp;Rodrigo Pérez-Rodríguez,&nbsp;Juan Diego Peña-Narvaez,&nbsp;Alberto García Gómez-Jacinto\",\"doi\":\"10.1002/rob.22353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The operational environments in which a mobile robot executes its missions often exhibit nonflat terrain characteristics, encompassing outdoor and indoor settings featuring ramps and slopes. In such scenarios, the conventional methodologies employed for localization encounter novel challenges and limitations. This study delineates a localization framework incorporating ground elevation and incline considerations, deviating from traditional two-dimensional localization paradigms that may falter in such contexts. In our proposed approach, the map encompasses elevation and spatial occupancy information, employing Gridmaps and Octomaps. At the same time, the perception model is designed to accommodate the robot's inclined orientation and the potential presence of ground as an obstacle, besides usual structural and dynamic obstacles. We provide an implementation of our approach fully working with Nav2, ready to replace the baseline Adaptative Monte Carlo Localization (AMCL) approach when the robot is in nonplanar environments. Our methodology was rigorously tested in both simulated environments and through practical application on actual robots, including the Tiago and Summit XL models, across various settings ranging from indoor and outdoor to flat and uneven terrains. Demonstrating exceptional precision, our approach yielded error margins below 10 cm and 0.05 radians in indoor settings and less than 1.0 m in extensive outdoor routes. While our results exhibit a slight improvement over AMCL in indoor environments, the enhancement in performance is significantly more pronounced when compared to three-dimensional simultaneous localization and mapping algorithms. This underscores the considerable robustness and efficiency of our approach, positioning it as an effective strategy for mobile robots tasked with navigating expansive and intricate indoor/outdoor environments.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 6\",\"pages\":\"1922-1939\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22353\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22353\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22353","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

移动机器人执行任务时所处的作业环境往往具有非平坦地形的特点,包括具有坡道和斜坡的室外和室内环境。在这种情况下,用于定位的传统方法会遇到新的挑战和限制。传统的二维定位范式在这种情况下可能会出现问题,而本研究则偏离了这一范式,提出了一种将地面高程和倾斜度考虑在内的定位框架。在我们提出的方法中,地图包含了高程和空间占用信息,采用了网格地图和八维地图。同时,除了常见的结构和动态障碍外,感知模型的设计还考虑到了机器人的倾斜方向和可能存在的地面障碍。我们提供了一种完全适用于 Nav2 的方法实施方案,当机器人处于非平面环境时,它可以取代基线自适应蒙特卡洛定位(AMCL)方法。我们的方法既在模拟环境中进行了严格测试,也在实际机器人(包括 Tiago 和 Summit XL 型号)上进行了实际应用测试,测试范围包括室内和室外、平坦和不平坦地形等各种环境。在室内环境中,我们的方法产生的误差范围低于 10 厘米和 0.05 弧度,在广泛的室外路线中,误差范围小于 1.0 米,显示了极高的精确度。在室内环境中,我们的结果与 AMCL 相比略有改进,但与三维同步定位和绘图算法相比,性能的提高则更为明显。这凸显了我们的方法具有相当高的鲁棒性和效率,可作为移动机器人在广阔而复杂的室内/室外环境中导航的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Open source robot localization for nonplanar environments

The operational environments in which a mobile robot executes its missions often exhibit nonflat terrain characteristics, encompassing outdoor and indoor settings featuring ramps and slopes. In such scenarios, the conventional methodologies employed for localization encounter novel challenges and limitations. This study delineates a localization framework incorporating ground elevation and incline considerations, deviating from traditional two-dimensional localization paradigms that may falter in such contexts. In our proposed approach, the map encompasses elevation and spatial occupancy information, employing Gridmaps and Octomaps. At the same time, the perception model is designed to accommodate the robot's inclined orientation and the potential presence of ground as an obstacle, besides usual structural and dynamic obstacles. We provide an implementation of our approach fully working with Nav2, ready to replace the baseline Adaptative Monte Carlo Localization (AMCL) approach when the robot is in nonplanar environments. Our methodology was rigorously tested in both simulated environments and through practical application on actual robots, including the Tiago and Summit XL models, across various settings ranging from indoor and outdoor to flat and uneven terrains. Demonstrating exceptional precision, our approach yielded error margins below 10 cm and 0.05 radians in indoor settings and less than 1.0 m in extensive outdoor routes. While our results exhibit a slight improvement over AMCL in indoor environments, the enhancement in performance is significantly more pronounced when compared to three-dimensional simultaneous localization and mapping algorithms. This underscores the considerable robustness and efficiency of our approach, positioning it as an effective strategy for mobile robots tasked with navigating expansive and intricate indoor/outdoor environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
期刊最新文献
Issue Information Cover Image, Volume 41, Number 8, December 2024 Issue Information ForzaETH Race Stack—Scaled Autonomous Head‐to‐Head Racing on Fully Commercial Off‐the‐Shelf Hardware Research on Satellite Navigation Control of Six‐Crawler Machinery Based on Fuzzy PID Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1