实用且可扩展的量子储层计算

Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh
{"title":"实用且可扩展的量子储层计算","authors":"Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh","doi":"arxiv-2405.04799","DOIUrl":null,"url":null,"abstract":"Quantum Reservoir Computing leverages quantum systems to solve complex\ncomputational tasks with unprecedented efficiency and reduced energy\nconsumption. This paper presents a novel QRC framework utilizing a quantum\noptical reservoir composed of two-level atoms within a single-mode optical\ncavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a\nscalable and practically measurable reservoir that outperforms traditional\nclassical reservoir computing in both memory retention and nonlinear data\nprocessing. We evaluate the reservoir's performance through two primary tasks:\nthe prediction of time-series data via the Mackey-Glass task and the\nclassification of sine-square waveforms. Our results demonstrate significant\nenhancements in performance with increased numbers of atoms, supported by\nnon-destructive, continuous quantum measurements and polynomial regression\ntechniques. This study confirms the potential of QRC to offer a scalable and\nefficient solution for advanced computational challenges, marking a significant\nstep forward in the integration of quantum physics with machine learning\ntechnology.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical and Scalable Quantum Reservoir Computing\",\"authors\":\"Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh\",\"doi\":\"arxiv-2405.04799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Reservoir Computing leverages quantum systems to solve complex\\ncomputational tasks with unprecedented efficiency and reduced energy\\nconsumption. This paper presents a novel QRC framework utilizing a quantum\\noptical reservoir composed of two-level atoms within a single-mode optical\\ncavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a\\nscalable and practically measurable reservoir that outperforms traditional\\nclassical reservoir computing in both memory retention and nonlinear data\\nprocessing. We evaluate the reservoir's performance through two primary tasks:\\nthe prediction of time-series data via the Mackey-Glass task and the\\nclassification of sine-square waveforms. Our results demonstrate significant\\nenhancements in performance with increased numbers of atoms, supported by\\nnon-destructive, continuous quantum measurements and polynomial regression\\ntechniques. This study confirms the potential of QRC to offer a scalable and\\nefficient solution for advanced computational challenges, marking a significant\\nstep forward in the integration of quantum physics with machine learning\\ntechnology.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.04799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.04799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子存储计算(Quantum Reservoir Computing)利用量子系统以前所未有的效率和更低的能耗解决复杂的计算任务。本文提出了一种新颖的 QRC 框架,利用单模光腔内由两级原子组成的量子光库。利用杰恩斯-康明斯和塔维斯-康明斯模型,我们介绍了可升级和实际可测量的贮存器,它在内存保留和非线性数据处理方面都优于传统的经典贮存器计算。我们通过两个主要任务来评估蓄水池的性能:通过 Mackey-Glass 任务预测时间序列数据和正弦波形分类。我们的结果表明,在非破坏性、连续量子测量和多项式回归技术的支持下,随着原子数量的增加,性能得到了显著提高。这项研究证实了 QRC 在为高级计算挑战提供可扩展的高效解决方案方面的潜力,标志着量子物理与机器学习技术的整合向前迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical and Scalable Quantum Reservoir Computing
Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks with unprecedented efficiency and reduced energy consumption. This paper presents a novel QRC framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode optical cavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a scalable and practically measurable reservoir that outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing. We evaluate the reservoir's performance through two primary tasks: the prediction of time-series data via the Mackey-Glass task and the classification of sine-square waveforms. Our results demonstrate significant enhancements in performance with increased numbers of atoms, supported by non-destructive, continuous quantum measurements and polynomial regression techniques. This study confirms the potential of QRC to offer a scalable and efficient solution for advanced computational challenges, marking a significant step forward in the integration of quantum physics with machine learning technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1