论路径笛卡尔积的诱导子图

Pub Date : 2024-05-09 DOI:10.1002/jgt.23116
Jiasheng Zeng, Xinmin Hou
{"title":"论路径笛卡尔积的诱导子图","authors":"Jiasheng Zeng,&nbsp;Xinmin Hou","doi":"10.1002/jgt.23116","DOIUrl":null,"url":null,"abstract":"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha ({Q}^{n})+1$</annotation>\n </semantics></math> vertices and with maximum degree smaller than <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n \n <mi>n</mi>\n </msup>\n </mrow>\n <annotation> ${Q}^{n}$</annotation>\n </semantics></math> is at least <span></span><math>\n <semantics>\n <mrow>\n <mo>⌈</mo>\n \n <msqrt>\n <mi>n</mi>\n </msqrt>\n \n <mo>⌉</mo>\n </mrow>\n <annotation> $\\lceil \\sqrt{n}\\rceil $</annotation>\n </semantics></math>, and posed the question: Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $\\alpha (G)+1$</annotation>\n </semantics></math> vertices, what can we say about <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f(G)$</annotation>\n </semantics></math>? In this paper, we investigate this question for Cartesian product of paths <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>m</mi>\n </msub>\n </mrow>\n <annotation> ${P}_{m}$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n </mrow>\n <annotation> ${P}_{m}^{k}$</annotation>\n </semantics></math>. We determine the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $m=2n+1$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $f({P}_{2n+1}^{k})=1$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $n\\ge 2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $f({P}_{3}^{k})=2$</annotation>\n </semantics></math>, and give a nontrivial lower bound of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mi>m</mi>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{m}^{k})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n <annotation> $m=2n$</annotation>\n </semantics></math> by showing that <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>cos</mi>\n \n <mfrac>\n <mrow>\n <mi>π</mi>\n \n <mi>n</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})\\ge \\lceil 2\\cos \\frac{\\pi n}{2n+1}\\sqrt{k}\\rceil $</annotation>\n </semantics></math>. In particular, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $n=1$</annotation>\n </semantics></math>, we have <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>Q</mi>\n \n <mi>k</mi>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>2</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msqrt>\n <mi>k</mi>\n </msqrt>\n </mrow>\n <annotation> $f({Q}^{k})=f({P}_{2}^{k})\\ge \\sqrt{k}$</annotation>\n </semantics></math>, which is Huang's result. The lower bounds of <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n \n <mn>3</mn>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{3}^{k})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n \n <msubsup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n \n <mi>n</mi>\n </mrow>\n \n <mi>k</mi>\n </msubsup>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $f({P}_{2n}^{k})$</annotation>\n </semantics></math> are given by using the spectral method provided by Huang.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On induced subgraph of Cartesian product of paths\",\"authors\":\"Jiasheng Zeng,&nbsp;Xinmin Hou\",\"doi\":\"10.1002/jgt.23116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chung et al. constructed an induced subgraph of the hypercube <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation> ${Q}^{n}$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\alpha ({Q}^{n})+1$</annotation>\\n </semantics></math> vertices and with maximum degree smaller than <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⌈</mo>\\n \\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n \\n <mo>⌉</mo>\\n </mrow>\\n <annotation> $\\\\lceil \\\\sqrt{n}\\\\rceil $</annotation>\\n </semantics></math>. Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>Q</mi>\\n \\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation> ${Q}^{n}$</annotation>\\n </semantics></math> is at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>⌈</mo>\\n \\n <msqrt>\\n <mi>n</mi>\\n </msqrt>\\n \\n <mo>⌉</mo>\\n </mrow>\\n <annotation> $\\\\lceil \\\\sqrt{n}\\\\rceil $</annotation>\\n </semantics></math>, and posed the question: Given a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f(G)$</annotation>\\n </semantics></math> be the minimum of the maximum degree of an induced subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\alpha (G)+1$</annotation>\\n </semantics></math> vertices, what can we say about <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f(G)$</annotation>\\n </semantics></math>? In this paper, we investigate this question for Cartesian product of paths <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n \\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation> ${P}_{m}$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>P</mi>\\n \\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msubsup>\\n </mrow>\\n <annotation> ${P}_{m}^{k}$</annotation>\\n </semantics></math>. We determine the exact values of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n \\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f({P}_{m}^{k})$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $m=2n+1$</annotation>\\n </semantics></math> by showing that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $f({P}_{2n+1}^{k})=1$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $n\\\\ge 2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $f({P}_{3}^{k})=2$</annotation>\\n </semantics></math>, and give a nontrivial lower bound of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n \\n <mi>m</mi>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f({P}_{m}^{k})$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>=</mo>\\n \\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $m=2n$</annotation>\\n </semantics></math> by showing that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>cos</mi>\\n \\n <mfrac>\\n <mrow>\\n <mi>π</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n \\n <msqrt>\\n <mi>k</mi>\\n </msqrt>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f({P}_{2n}^{k})\\\\ge \\\\lceil 2\\\\cos \\\\frac{\\\\pi n}{2n+1}\\\\sqrt{k}\\\\rceil $</annotation>\\n </semantics></math>. In particular, when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $n=1$</annotation>\\n </semantics></math>, we have <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>Q</mi>\\n \\n <mi>k</mi>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n \\n <mn>2</mn>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msqrt>\\n <mi>k</mi>\\n </msqrt>\\n </mrow>\\n <annotation> $f({Q}^{k})=f({P}_{2}^{k})\\\\ge \\\\sqrt{k}$</annotation>\\n </semantics></math>, which is Huang's result. The lower bounds of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n \\n <mn>3</mn>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f({P}_{3}^{k})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <msubsup>\\n <mi>P</mi>\\n <mrow>\\n <mn>2</mn>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mi>k</mi>\\n </msubsup>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $f({P}_{2n}^{k})$</annotation>\\n </semantics></math> are given by using the spectral method provided by Huang.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Chung 等人构建了一个有顶点且最大度小于 的超立方体诱导子图。 随后,Huang 证明了超立方体诱导子图的最大度至少为 ,从而证明了灵敏度猜想,并提出了一个问题:给定一个图,让顶点上的诱导子图的最大度的最小值为 ,我们能说什么呢?在本文中,我们针对路径的笛卡尔乘积 ,研究了这个问题。通过证明 和 ,我们确定了 when 的精确值,并通过证明 。特别是,当 时,我们有 ,这是黄的结果。和 的下界是利用黄氏提供的谱方法给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
On induced subgraph of Cartesian product of paths

Chung et al. constructed an induced subgraph of the hypercube Q n ${Q}^{n}$ with α ( Q n ) + 1 $\alpha ({Q}^{n})+1$ vertices and with maximum degree smaller than n $\lceil \sqrt{n}\rceil $ . Subsequently, Huang proved the Sensitivity Conjecture by demonstrating that the maximum degree of such an induced subgraph of hypercube Q n ${Q}^{n}$ is at least n $\lceil \sqrt{n}\rceil $ , and posed the question: Given a graph G $G$ , let f ( G ) $f(G)$ be the minimum of the maximum degree of an induced subgraph of G $G$ on α ( G ) + 1 $\alpha (G)+1$ vertices, what can we say about f ( G ) $f(G)$ ? In this paper, we investigate this question for Cartesian product of paths P m ${P}_{m}$ , denoted by P m k ${P}_{m}^{k}$ . We determine the exact values of f ( P m k ) $f({P}_{m}^{k})$ when m = 2 n + 1 $m=2n+1$ by showing that f ( P 2 n + 1 k ) = 1 $f({P}_{2n+1}^{k})=1$ for n 2 $n\ge 2$ and f ( P 3 k ) = 2 $f({P}_{3}^{k})=2$ , and give a nontrivial lower bound of f ( P m k ) $f({P}_{m}^{k})$ when m = 2 n $m=2n$ by showing that f ( P 2 n k ) 2 cos π n 2 n + 1 k $f({P}_{2n}^{k})\ge \lceil 2\cos \frac{\pi n}{2n+1}\sqrt{k}\rceil $ . In particular, when n = 1 $n=1$ , we have f ( Q k ) = f ( P 2 k ) k $f({Q}^{k})=f({P}_{2}^{k})\ge \sqrt{k}$ , which is Huang's result. The lower bounds of f ( P 3 k ) $f({P}_{3}^{k})$ and f ( P 2 n k ) $f({P}_{2n}^{k})$ are given by using the spectral method provided by Huang.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1