Samuel Nowak, Taghi Sherizadeh, Mina Esmaeelpour, Paul Brooks, Dogukan Guner, Kutay Karadeniz, Gunnar Wurst, Alper Kirmaci
{"title":"利用新型分布式光纤应变传感方法对地下散装采矿作业进行地质力学监测","authors":"Samuel Nowak, Taghi Sherizadeh, Mina Esmaeelpour, Paul Brooks, Dogukan Guner, Kutay Karadeniz, Gunnar Wurst, Alper Kirmaci","doi":"10.1007/s42461-024-00991-7","DOIUrl":null,"url":null,"abstract":"<p>As mines continue to deepen and become more expansive, active monitoring of larger volumes of rock mass will become more critical to calibrate numerical simulations and to ensure the safety of underground workers. Monitoring larger volumes of rock mass requires low-cost sensors which are simple in construction and installation. In this study, a novel hybrid optical fiber cable (HOFC) designed for use in distributed optical fiber sensing (DOFS) via grouted boreholes was employed to monitor a bulk mining operation in an underground metal mine. The HOFC was successfully used to monitor approximately 2.7 × 10<sup>3</sup> m<sup>3</sup> of rock mass above excavations surrounding a pillar removal area in which six large pillars were removed simultaneously. A total of six measurement boreholes (maximum depth of 22 m) were used to measure strain along the optical fiber during the pillar removal operation using the HOFC, allowing for 70 individual strain measurement points, which were constructed for under one US dollar each. Monitoring of the excavation area took place over a 44-day period after pillar removal. Extensional strains were noted in the areas closest to the removed pillars, while areas of compression were noted directly above the remaining pillar in the area. The results of the case study demonstrate that a low-cost optical fiber strain sensing network can be rapidly installed in a large excavation area and can provide highly sensitive strain measurements in a manner that would be cost-prohibitive via other methods.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"208 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geomechanical Monitoring of an Underground Bulk Mining Operation Using a Novel Distributed Optical Fiber Strain Sensing Method\",\"authors\":\"Samuel Nowak, Taghi Sherizadeh, Mina Esmaeelpour, Paul Brooks, Dogukan Guner, Kutay Karadeniz, Gunnar Wurst, Alper Kirmaci\",\"doi\":\"10.1007/s42461-024-00991-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As mines continue to deepen and become more expansive, active monitoring of larger volumes of rock mass will become more critical to calibrate numerical simulations and to ensure the safety of underground workers. Monitoring larger volumes of rock mass requires low-cost sensors which are simple in construction and installation. In this study, a novel hybrid optical fiber cable (HOFC) designed for use in distributed optical fiber sensing (DOFS) via grouted boreholes was employed to monitor a bulk mining operation in an underground metal mine. The HOFC was successfully used to monitor approximately 2.7 × 10<sup>3</sup> m<sup>3</sup> of rock mass above excavations surrounding a pillar removal area in which six large pillars were removed simultaneously. A total of six measurement boreholes (maximum depth of 22 m) were used to measure strain along the optical fiber during the pillar removal operation using the HOFC, allowing for 70 individual strain measurement points, which were constructed for under one US dollar each. Monitoring of the excavation area took place over a 44-day period after pillar removal. Extensional strains were noted in the areas closest to the removed pillars, while areas of compression were noted directly above the remaining pillar in the area. The results of the case study demonstrate that a low-cost optical fiber strain sensing network can be rapidly installed in a large excavation area and can provide highly sensitive strain measurements in a manner that would be cost-prohibitive via other methods.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00991-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00991-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Geomechanical Monitoring of an Underground Bulk Mining Operation Using a Novel Distributed Optical Fiber Strain Sensing Method
As mines continue to deepen and become more expansive, active monitoring of larger volumes of rock mass will become more critical to calibrate numerical simulations and to ensure the safety of underground workers. Monitoring larger volumes of rock mass requires low-cost sensors which are simple in construction and installation. In this study, a novel hybrid optical fiber cable (HOFC) designed for use in distributed optical fiber sensing (DOFS) via grouted boreholes was employed to monitor a bulk mining operation in an underground metal mine. The HOFC was successfully used to monitor approximately 2.7 × 103 m3 of rock mass above excavations surrounding a pillar removal area in which six large pillars were removed simultaneously. A total of six measurement boreholes (maximum depth of 22 m) were used to measure strain along the optical fiber during the pillar removal operation using the HOFC, allowing for 70 individual strain measurement points, which were constructed for under one US dollar each. Monitoring of the excavation area took place over a 44-day period after pillar removal. Extensional strains were noted in the areas closest to the removed pillars, while areas of compression were noted directly above the remaining pillar in the area. The results of the case study demonstrate that a low-cost optical fiber strain sensing network can be rapidly installed in a large excavation area and can provide highly sensitive strain measurements in a manner that would be cost-prohibitive via other methods.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.