{"title":"关于旋转玻色-爱因斯坦凝聚态的离散基态","authors":"Patrick Henning, Mahima Yadav","doi":"10.1090/mcom/3962","DOIUrl":null,"url":null,"abstract":"<p>The ground states of Bose–Einstein condensates in a rotating frame can be described as constrained minimizers of the Gross–Pitaevskii energy functional with an angular momentum term. In this paper we consider the corresponding discrete minimization problem in Lagrange finite element spaces of arbitrary polynomial order and we investigate the approximation properties of discrete ground states. In particular, we prove a priori error estimates of optimal order in the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>- and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm, as well as for the ground state energy and the corresponding chemical potential. A central issue in the analysis of the problem is the missing uniqueness of ground states, which is mainly caused by the invariance of the energy functional under complex phase shifts. Our error analysis is therefore based on an Euler–Lagrange functional that we restrict to certain tangent spaces in which we have local uniqueness of ground states. This gives rise to an error decomposition that is ultimately used to derive the desired a priori error estimates. We also present numerical experiments to illustrate various aspects of the problem structure.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On discrete ground states of rotating Bose–Einstein condensates\",\"authors\":\"Patrick Henning, Mahima Yadav\",\"doi\":\"10.1090/mcom/3962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ground states of Bose–Einstein condensates in a rotating frame can be described as constrained minimizers of the Gross–Pitaevskii energy functional with an angular momentum term. In this paper we consider the corresponding discrete minimization problem in Lagrange finite element spaces of arbitrary polynomial order and we investigate the approximation properties of discrete ground states. In particular, we prove a priori error estimates of optimal order in the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>- and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1\\\"> <mml:semantics> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">H^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-norm, as well as for the ground state energy and the corresponding chemical potential. A central issue in the analysis of the problem is the missing uniqueness of ground states, which is mainly caused by the invariance of the energy functional under complex phase shifts. Our error analysis is therefore based on an Euler–Lagrange functional that we restrict to certain tangent spaces in which we have local uniqueness of ground states. This gives rise to an error decomposition that is ultimately used to derive the desired a priori error estimates. We also present numerical experiments to illustrate various aspects of the problem structure.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
旋转框架中玻色-爱因斯坦凝聚态的基态可以描述为带有角动量项的格罗斯-皮塔耶夫斯基能量函数的约束最小化。本文考虑了任意多项式阶拉格朗日有限元空间中相应的离散最小化问题,并研究了离散基态的近似特性。特别是,我们证明了 L 2 L^2 - 和 H 1 H^1 - 规范中最优阶的先验误差估计,以及基态能量和相应化学势的先验误差估计。问题分析中的一个核心问题是基态唯一性的缺失,这主要是由于复相移下能量函数的不变性造成的。因此,我们的误差分析基于欧拉-拉格朗日函数,并将其限制在具有局部唯一基态的特定切空间。这就产生了误差分解,最终用于推导所需的先验误差估计。我们还通过数值实验来说明问题结构的各个方面。
On discrete ground states of rotating Bose–Einstein condensates
The ground states of Bose–Einstein condensates in a rotating frame can be described as constrained minimizers of the Gross–Pitaevskii energy functional with an angular momentum term. In this paper we consider the corresponding discrete minimization problem in Lagrange finite element spaces of arbitrary polynomial order and we investigate the approximation properties of discrete ground states. In particular, we prove a priori error estimates of optimal order in the L2L^2- and H1H^1-norm, as well as for the ground state energy and the corresponding chemical potential. A central issue in the analysis of the problem is the missing uniqueness of ground states, which is mainly caused by the invariance of the energy functional under complex phase shifts. Our error analysis is therefore based on an Euler–Lagrange functional that we restrict to certain tangent spaces in which we have local uniqueness of ground states. This gives rise to an error decomposition that is ultimately used to derive the desired a priori error estimates. We also present numerical experiments to illustrate various aspects of the problem structure.