{"title":"基于感应开关 pFLASH 的 FPGA 可编程逻辑元件的设计与验证","authors":"Zhengzhou Cao, Guozhu Liu, Yanfei Zhang, Yueer Shan, Yuting Xu","doi":"10.1631/fitee.2300454","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a kind of programmable logic element (PLE) based on Sense-Switch pFLASH technology. By programming Sense-Switch pFLASH, all three-bit look-up table (LUT3) functions, partial four-bit look-up table (LUT4) functions, latch functions, and d flip flop (DFF) with enable and reset functions can be realized. Because PLE uses a choice of operational logic (COOL) approach for the operation of logic functions, it allows any logic circuit to be implemented at any ratio of combinatorial logic to register. This intrinsic property makes it close to the basic application specific integrated circuit (ASIC) cell in terms of fine granularity, thus allowing ASIC-like cell-based mappers to apply all their optimization potential. By measuring Sense-Switch pFLASH and PLE circuits, the results show that the “on” state driving current of the Sense-Switch pFLASH is about 245.52 µA, and that the “off” state leakage current is about 0.1 pA. The programmable function of PLE works normally. The delay of the typical combinatorial logic operation AND3 is 0.69 ns, and the delay of the sequential logic operation DFF is 0.65 ns, both of which meet the requirements of the design technical index.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"246 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and verification of an FPGA programmable logic element based on Sense-Switch pFLASH\",\"authors\":\"Zhengzhou Cao, Guozhu Liu, Yanfei Zhang, Yueer Shan, Yuting Xu\",\"doi\":\"10.1631/fitee.2300454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a kind of programmable logic element (PLE) based on Sense-Switch pFLASH technology. By programming Sense-Switch pFLASH, all three-bit look-up table (LUT3) functions, partial four-bit look-up table (LUT4) functions, latch functions, and d flip flop (DFF) with enable and reset functions can be realized. Because PLE uses a choice of operational logic (COOL) approach for the operation of logic functions, it allows any logic circuit to be implemented at any ratio of combinatorial logic to register. This intrinsic property makes it close to the basic application specific integrated circuit (ASIC) cell in terms of fine granularity, thus allowing ASIC-like cell-based mappers to apply all their optimization potential. By measuring Sense-Switch pFLASH and PLE circuits, the results show that the “on” state driving current of the Sense-Switch pFLASH is about 245.52 µA, and that the “off” state leakage current is about 0.1 pA. The programmable function of PLE works normally. The delay of the typical combinatorial logic operation AND3 is 0.69 ns, and the delay of the sequential logic operation DFF is 0.65 ns, both of which meet the requirements of the design technical index.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"246 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300454\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300454","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Design and verification of an FPGA programmable logic element based on Sense-Switch pFLASH
This paper proposes a kind of programmable logic element (PLE) based on Sense-Switch pFLASH technology. By programming Sense-Switch pFLASH, all three-bit look-up table (LUT3) functions, partial four-bit look-up table (LUT4) functions, latch functions, and d flip flop (DFF) with enable and reset functions can be realized. Because PLE uses a choice of operational logic (COOL) approach for the operation of logic functions, it allows any logic circuit to be implemented at any ratio of combinatorial logic to register. This intrinsic property makes it close to the basic application specific integrated circuit (ASIC) cell in terms of fine granularity, thus allowing ASIC-like cell-based mappers to apply all their optimization potential. By measuring Sense-Switch pFLASH and PLE circuits, the results show that the “on” state driving current of the Sense-Switch pFLASH is about 245.52 µA, and that the “off” state leakage current is about 0.1 pA. The programmable function of PLE works normally. The delay of the typical combinatorial logic operation AND3 is 0.69 ns, and the delay of the sequential logic operation DFF is 0.65 ns, both of which meet the requirements of the design technical index.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.