方形软锂离子电池热失控特性及风险研究 钉子的穿透力

IF 1 4区 工程技术 Q4 ENGINEERING, CHEMICAL Process Safety Progress Pub Date : 2024-05-13 DOI:10.1002/prs.12613
Jun Wang, Le Wang, Renming Pan, Xia Zhou
{"title":"方形软锂离子电池热失控特性及风险研究 钉子的穿透力","authors":"Jun Wang, Le Wang, Renming Pan, Xia Zhou","doi":"10.1002/prs.12613","DOIUrl":null,"url":null,"abstract":"To conduct a comprehensive investigation into the nail penetration thermal runaway (TR) characteristics of 16 Ah/5 Ah lithium‐ion batteries (LIBs) and their modules. The study aims to analyze the burst characteristics and examine the variations in TR behavior under specific conditions, with the goal of improving early warning and protection against LIB TR incidents. The research findings demonstrate that mechanical nail penetration can rapidly trigger TR, resulting in the highest temperature 522.3°C within 51.9 s, and the fastest is 20 s. In the case of LIB modules, a secondary temperature rise occurs, exhibiting an increased rate of up to 77%. Notably, when the battery bulges, there is a release of high‐temperature two‐phase heat flow accompanied by a significant discharge of combustible gases. This escalation increases the risk of further explosions. Moreover, the study observes repeated spray fires and the generation of a considerable amount of smoke. Additionally, the study highlights the role of sudden rise in temperature and the release of H2 as early indicators of TR. These findings provide valuable theoretical insights into the characteristics and risks of square soft LIBs, enhance safety measures, and contribute to the development of early warning systems for LIBs.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the thermal runaway characteristics and risks of square soft lithium‐ion batteries nail penetration\",\"authors\":\"Jun Wang, Le Wang, Renming Pan, Xia Zhou\",\"doi\":\"10.1002/prs.12613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To conduct a comprehensive investigation into the nail penetration thermal runaway (TR) characteristics of 16 Ah/5 Ah lithium‐ion batteries (LIBs) and their modules. The study aims to analyze the burst characteristics and examine the variations in TR behavior under specific conditions, with the goal of improving early warning and protection against LIB TR incidents. The research findings demonstrate that mechanical nail penetration can rapidly trigger TR, resulting in the highest temperature 522.3°C within 51.9 s, and the fastest is 20 s. In the case of LIB modules, a secondary temperature rise occurs, exhibiting an increased rate of up to 77%. Notably, when the battery bulges, there is a release of high‐temperature two‐phase heat flow accompanied by a significant discharge of combustible gases. This escalation increases the risk of further explosions. Moreover, the study observes repeated spray fires and the generation of a considerable amount of smoke. Additionally, the study highlights the role of sudden rise in temperature and the release of H2 as early indicators of TR. These findings provide valuable theoretical insights into the characteristics and risks of square soft LIBs, enhance safety measures, and contribute to the development of early warning systems for LIBs.\",\"PeriodicalId\":20680,\"journal\":{\"name\":\"Process Safety Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prs.12613\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prs.12613","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

对 16 Ah/5 Ah 锂离子电池(LIB)及其模块的钉穿透热失控(TR)特性进行全面调查。该研究旨在分析爆裂特性,并检查特定条件下 TR 行为的变化,目的是改进对锂离子电池 TR 事故的早期预警和保护。研究结果表明,机械钉穿透可迅速触发 TR,导致最高温度在 51.9 秒内达到 522.3°C,最快为 20 秒。值得注意的是,当电池鼓起时,会释放出高温两相热流,并伴有大量可燃气体排出。这种升级增加了进一步爆炸的风险。此外,研究还观察到反复喷射的火焰和大量烟雾的产生。此外,研究还强调了温度突然升高和 H2 释放作为 TR 早期指标的作用。这些发现为方形软质锂电池的特性和风险提供了宝贵的理论见解,加强了安全措施,并有助于开发锂电池的早期预警系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the thermal runaway characteristics and risks of square soft lithium‐ion batteries nail penetration
To conduct a comprehensive investigation into the nail penetration thermal runaway (TR) characteristics of 16 Ah/5 Ah lithium‐ion batteries (LIBs) and their modules. The study aims to analyze the burst characteristics and examine the variations in TR behavior under specific conditions, with the goal of improving early warning and protection against LIB TR incidents. The research findings demonstrate that mechanical nail penetration can rapidly trigger TR, resulting in the highest temperature 522.3°C within 51.9 s, and the fastest is 20 s. In the case of LIB modules, a secondary temperature rise occurs, exhibiting an increased rate of up to 77%. Notably, when the battery bulges, there is a release of high‐temperature two‐phase heat flow accompanied by a significant discharge of combustible gases. This escalation increases the risk of further explosions. Moreover, the study observes repeated spray fires and the generation of a considerable amount of smoke. Additionally, the study highlights the role of sudden rise in temperature and the release of H2 as early indicators of TR. These findings provide valuable theoretical insights into the characteristics and risks of square soft LIBs, enhance safety measures, and contribute to the development of early warning systems for LIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety Progress
Process Safety Progress 工程技术-工程:化工
CiteScore
2.20
自引率
10.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Process Safety Progress covers process safety for engineering professionals. It addresses such topics as incident investigations/case histories, hazardous chemicals management, hazardous leaks prevention, risk assessment, process hazards evaluation, industrial hygiene, fire and explosion analysis, preventive maintenance, vapor cloud dispersion, and regulatory compliance, training, education, and other areas in process safety and loss prevention, including emerging concerns like plant and/or process security. Papers from the annual Loss Prevention Symposium and other AIChE safety conferences are automatically considered for publication, but unsolicited papers, particularly those addressing process safety issues in emerging technologies and industries are encouraged and evaluated equally.
期刊最新文献
Numerical study of failure modes of hazardous material tanks exposed to fire accidents in the process industry So, you cannot vent: A deep dive into other explosion protection methods Risk and consequence analysis of ammonia storage units in a nuclear fuel cycle facility Diagnosing electrostatic problems and hazards in industrial processes: Case studies Numerical simulation study on propane gas leakage and diffusion law in slope terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1