Alberto Garcia-Perez, Maria Jose Gomez-Silva, Arturo de la Escalera-Hueso
{"title":"利用稀缺数据改进现场视觉工具磨损监测的生成式人工智能方法","authors":"Alberto Garcia-Perez, Maria Jose Gomez-Silva, Arturo de la Escalera-Hueso","doi":"10.1007/s10845-024-02379-2","DOIUrl":null,"url":null,"abstract":"<p>Most aerospace turbine casings are mechanised using a vertical lathe. This paper presents a tool wear monitoring system using computer vision that analyses tool inserts once that the machining process has been completed. By installing a camera in the robot magazine room and a tool cleaning device to remove chips and cooling residuals, a neat tool image can be acquired. A subsequent Deep Learning (DL) model classifies the tool as acceptable or not, avoiding the drawbacks of alternative computer vision algorithms based on edges, dedicated features etc. Such model was trained with a significantly reduced number of images, in order to minimise the costly process to acquire and classify images during production. This could be achieved by introducing a special lens and some generative Artificial Intelligence (AI) models. This paper proposes two novel architectures: SCWGAN-GP, Scalable Condition Wasserstein Generative Adversarial Network (WGAN) with Gradient Penalty, and Focal Stable Diffusion (FSD) model, with class injection and dedicated loss function, to artificially increase the number of images to train the DL model. In addition, a K|Lens special optics was used to get multiple views of the vertical lathe inserts as a means of further increase data augmentation by hardware with a reduced number of production samples. Given an initial dataset, the classification accuracy was increased from 80.0 % up to 96.0 % using the FSD model. We also found that using as low as 100 real images, our methodology can achieve up to 93.3 % accuracy. Using only 100 original images for each insert type and wear condition results in 93.3 % accuracy and up to 94.6 % if 200 images are used. This accuracy is considered to be within human inspector uncertainty for this use-case. Fine-tuning the FSD model, with nearly 1 billion training parameters, showed superior performance compared to the SCWGAN-GP model, with only 80 million parameters, besides of requiring less training samples to produced higher quality output images. Furthermore, the visualization of the output activation mapping confirms that the model takes a decision on the right image features. Time to create the dataset was reduced from 3 months to 2 days using generative AI. So our approach enables to create industrial dataset with minimum effort and significant time speed-up compared with the conventional approach of acquiring a large number of images that DL models usually requires to avoid over-fitting. Despite the good results, this methodology is only applicable to relatively simple cases, such as our inserts where the images are not complex.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"2016 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generative AI approach to improve in-situ vision tool wear monitoring with scarce data\",\"authors\":\"Alberto Garcia-Perez, Maria Jose Gomez-Silva, Arturo de la Escalera-Hueso\",\"doi\":\"10.1007/s10845-024-02379-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most aerospace turbine casings are mechanised using a vertical lathe. This paper presents a tool wear monitoring system using computer vision that analyses tool inserts once that the machining process has been completed. By installing a camera in the robot magazine room and a tool cleaning device to remove chips and cooling residuals, a neat tool image can be acquired. A subsequent Deep Learning (DL) model classifies the tool as acceptable or not, avoiding the drawbacks of alternative computer vision algorithms based on edges, dedicated features etc. Such model was trained with a significantly reduced number of images, in order to minimise the costly process to acquire and classify images during production. This could be achieved by introducing a special lens and some generative Artificial Intelligence (AI) models. This paper proposes two novel architectures: SCWGAN-GP, Scalable Condition Wasserstein Generative Adversarial Network (WGAN) with Gradient Penalty, and Focal Stable Diffusion (FSD) model, with class injection and dedicated loss function, to artificially increase the number of images to train the DL model. In addition, a K|Lens special optics was used to get multiple views of the vertical lathe inserts as a means of further increase data augmentation by hardware with a reduced number of production samples. Given an initial dataset, the classification accuracy was increased from 80.0 % up to 96.0 % using the FSD model. We also found that using as low as 100 real images, our methodology can achieve up to 93.3 % accuracy. Using only 100 original images for each insert type and wear condition results in 93.3 % accuracy and up to 94.6 % if 200 images are used. This accuracy is considered to be within human inspector uncertainty for this use-case. Fine-tuning the FSD model, with nearly 1 billion training parameters, showed superior performance compared to the SCWGAN-GP model, with only 80 million parameters, besides of requiring less training samples to produced higher quality output images. Furthermore, the visualization of the output activation mapping confirms that the model takes a decision on the right image features. Time to create the dataset was reduced from 3 months to 2 days using generative AI. So our approach enables to create industrial dataset with minimum effort and significant time speed-up compared with the conventional approach of acquiring a large number of images that DL models usually requires to avoid over-fitting. Despite the good results, this methodology is only applicable to relatively simple cases, such as our inserts where the images are not complex.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02379-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02379-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Generative AI approach to improve in-situ vision tool wear monitoring with scarce data
Most aerospace turbine casings are mechanised using a vertical lathe. This paper presents a tool wear monitoring system using computer vision that analyses tool inserts once that the machining process has been completed. By installing a camera in the robot magazine room and a tool cleaning device to remove chips and cooling residuals, a neat tool image can be acquired. A subsequent Deep Learning (DL) model classifies the tool as acceptable or not, avoiding the drawbacks of alternative computer vision algorithms based on edges, dedicated features etc. Such model was trained with a significantly reduced number of images, in order to minimise the costly process to acquire and classify images during production. This could be achieved by introducing a special lens and some generative Artificial Intelligence (AI) models. This paper proposes two novel architectures: SCWGAN-GP, Scalable Condition Wasserstein Generative Adversarial Network (WGAN) with Gradient Penalty, and Focal Stable Diffusion (FSD) model, with class injection and dedicated loss function, to artificially increase the number of images to train the DL model. In addition, a K|Lens special optics was used to get multiple views of the vertical lathe inserts as a means of further increase data augmentation by hardware with a reduced number of production samples. Given an initial dataset, the classification accuracy was increased from 80.0 % up to 96.0 % using the FSD model. We also found that using as low as 100 real images, our methodology can achieve up to 93.3 % accuracy. Using only 100 original images for each insert type and wear condition results in 93.3 % accuracy and up to 94.6 % if 200 images are used. This accuracy is considered to be within human inspector uncertainty for this use-case. Fine-tuning the FSD model, with nearly 1 billion training parameters, showed superior performance compared to the SCWGAN-GP model, with only 80 million parameters, besides of requiring less training samples to produced higher quality output images. Furthermore, the visualization of the output activation mapping confirms that the model takes a decision on the right image features. Time to create the dataset was reduced from 3 months to 2 days using generative AI. So our approach enables to create industrial dataset with minimum effort and significant time speed-up compared with the conventional approach of acquiring a large number of images that DL models usually requires to avoid over-fitting. Despite the good results, this methodology is only applicable to relatively simple cases, such as our inserts where the images are not complex.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.