纳米多孔框架物理性质的多尺度建模:预测机械、热和吸附行为。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-16 DOI:10.1021/acs.accounts.4c00161
Arthur Hardiagon,  and , François-Xavier Coudert*, 
{"title":"纳米多孔框架物理性质的多尺度建模:预测机械、热和吸附行为。","authors":"Arthur Hardiagon,&nbsp; and ,&nbsp;François-Xavier Coudert*,&nbsp;","doi":"10.1021/acs.accounts.4c00161","DOIUrl":null,"url":null,"abstract":"<p >Nanoporous frameworks are a large and diverse family of supramolecular materials, whose chemical building units (organic, inorganic, or both) are assembled into a 3D architecture with well-defined connectivity and topology, featuring intrinsic porosity. These materials play a key role in various industrial processes and applications, such as energy production and conversion, fluid separation, gas storage, water harvesting, and many more. The performance and suitability of nanoporous materials for each specific application are directly related to both their physical and chemical properties, and their determination is crucial for process engineering and optimization of performances. In this Account, we focus on some recent developments in the multiscale modeling of physical properties of nanoporous frameworks, highlighting the latest advances in three specific areas: mechanical properties, thermal properties, and adsorption.</p><p >In the study of the mechanical behavior of nanoporous materials, the past few years have seen a rapid acceleration of research. For example, computational resources have been pooled to create a public large-scale database of elastic constants as part of the Materials Project initiative to accelerate innovation in materials research: those can serve as a basis for data-based discovery of materials with targeted properties, as well as the training of machine learning predictor models.</p><p >The large-scale prediction of thermal behavior, in comparison, is not yet routinely performed at such a large scale. Tentative databases have been assembled at the DFT level on specific families of materials, such as zeolites, but prediction at larger scale currently requires the use of transferable classical force fields, whose accuracy can be limited.</p><p >Finally, adsorption is naturally one of the most studied physical properties of nanoporous frameworks, as fluid separation or storage is often the primary target for these materials. We highlight the recent achievements and open challenges for adsorption prediction at a large scale, focusing in particular on the accuracy of computational models and the reliability of comparisons with experimental data available. We detail some recent methodological improvements in the prediction of adsorption-related properties: in particular, we describe the recent research efforts to go beyond the study of thermodynamic quantities (uptake, adsorption enthalpy, and thermodynamic selectivity) and predict transport properties using data-based methods and high-throughput computational schemes. Finally, we stress the importance of data-based methods of addressing all sources of uncertainty.</p><p >The Account concludes with some perspectives about the latest developments and open questions in data-based approaches and the integration of computational and experimental data together in the materials discovery loop.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior\",\"authors\":\"Arthur Hardiagon,&nbsp; and ,&nbsp;François-Xavier Coudert*,&nbsp;\",\"doi\":\"10.1021/acs.accounts.4c00161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoporous frameworks are a large and diverse family of supramolecular materials, whose chemical building units (organic, inorganic, or both) are assembled into a 3D architecture with well-defined connectivity and topology, featuring intrinsic porosity. These materials play a key role in various industrial processes and applications, such as energy production and conversion, fluid separation, gas storage, water harvesting, and many more. The performance and suitability of nanoporous materials for each specific application are directly related to both their physical and chemical properties, and their determination is crucial for process engineering and optimization of performances. In this Account, we focus on some recent developments in the multiscale modeling of physical properties of nanoporous frameworks, highlighting the latest advances in three specific areas: mechanical properties, thermal properties, and adsorption.</p><p >In the study of the mechanical behavior of nanoporous materials, the past few years have seen a rapid acceleration of research. For example, computational resources have been pooled to create a public large-scale database of elastic constants as part of the Materials Project initiative to accelerate innovation in materials research: those can serve as a basis for data-based discovery of materials with targeted properties, as well as the training of machine learning predictor models.</p><p >The large-scale prediction of thermal behavior, in comparison, is not yet routinely performed at such a large scale. Tentative databases have been assembled at the DFT level on specific families of materials, such as zeolites, but prediction at larger scale currently requires the use of transferable classical force fields, whose accuracy can be limited.</p><p >Finally, adsorption is naturally one of the most studied physical properties of nanoporous frameworks, as fluid separation or storage is often the primary target for these materials. We highlight the recent achievements and open challenges for adsorption prediction at a large scale, focusing in particular on the accuracy of computational models and the reliability of comparisons with experimental data available. We detail some recent methodological improvements in the prediction of adsorption-related properties: in particular, we describe the recent research efforts to go beyond the study of thermodynamic quantities (uptake, adsorption enthalpy, and thermodynamic selectivity) and predict transport properties using data-based methods and high-throughput computational schemes. Finally, we stress the importance of data-based methods of addressing all sources of uncertainty.</p><p >The Account concludes with some perspectives about the latest developments and open questions in data-based approaches and the integration of computational and experimental data together in the materials discovery loop.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00161\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.4c00161","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Conspectus纳米多孔框架是一个庞大而多样化的超分子材料家族,其化学构建单元(有机、无机或两者兼有)被组装成具有明确连通性和拓扑结构的三维结构,并具有内在多孔性。这些材料在能源生产和转换、流体分离、气体储存、水收集等各种工业过程和应用中发挥着关键作用。纳米多孔材料在各种特定应用中的性能和适用性与其物理和化学特性直接相关,而确定这些特性对于工艺工程和性能优化至关重要。在本报告中,我们将重点介绍纳米多孔框架物理性质多尺度建模方面的一些最新进展,并着重介绍在力学性能、热性能和吸附性这三个具体领域的最新进展。例如,作为加速材料研究创新的 "材料项目"(Materials Project)计划的一部分,计算资源已被汇集起来,创建了一个公开的大型弹性常数数据库:这些数据库可作为基于数据发现具有目标特性的材料以及训练机器学习预测模型的基础。在沸石等特定材料家族的 DFT 层面上已经建立了初步数据库,但更大规模的预测目前需要使用可转移的经典力场,其准确性可能有限。最后,吸附自然是纳米多孔框架研究最多的物理性质之一,因为流体分离或存储通常是这些材料的主要目标。我们着重介绍了大规模吸附预测的最新成就和面临的挑战,尤其关注计算模型的准确性以及与现有实验数据进行比较的可靠性。我们详细介绍了近期在吸附相关特性预测方面的一些方法改进:特别是,我们介绍了近期在热力学量(吸附、吸附焓和热力学选择性)研究之外,利用基于数据的方法和高通量计算方案预测传输特性的研究工作。最后,我们强调了基于数据的方法在解决所有不确定性来源方面的重要性。开户绑定手机领体验金最后对基于数据的方法以及在材料发现循环中将计算数据和实验数据整合在一起的最新发展和未决问题进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior

Nanoporous frameworks are a large and diverse family of supramolecular materials, whose chemical building units (organic, inorganic, or both) are assembled into a 3D architecture with well-defined connectivity and topology, featuring intrinsic porosity. These materials play a key role in various industrial processes and applications, such as energy production and conversion, fluid separation, gas storage, water harvesting, and many more. The performance and suitability of nanoporous materials for each specific application are directly related to both their physical and chemical properties, and their determination is crucial for process engineering and optimization of performances. In this Account, we focus on some recent developments in the multiscale modeling of physical properties of nanoporous frameworks, highlighting the latest advances in three specific areas: mechanical properties, thermal properties, and adsorption.

In the study of the mechanical behavior of nanoporous materials, the past few years have seen a rapid acceleration of research. For example, computational resources have been pooled to create a public large-scale database of elastic constants as part of the Materials Project initiative to accelerate innovation in materials research: those can serve as a basis for data-based discovery of materials with targeted properties, as well as the training of machine learning predictor models.

The large-scale prediction of thermal behavior, in comparison, is not yet routinely performed at such a large scale. Tentative databases have been assembled at the DFT level on specific families of materials, such as zeolites, but prediction at larger scale currently requires the use of transferable classical force fields, whose accuracy can be limited.

Finally, adsorption is naturally one of the most studied physical properties of nanoporous frameworks, as fluid separation or storage is often the primary target for these materials. We highlight the recent achievements and open challenges for adsorption prediction at a large scale, focusing in particular on the accuracy of computational models and the reliability of comparisons with experimental data available. We detail some recent methodological improvements in the prediction of adsorption-related properties: in particular, we describe the recent research efforts to go beyond the study of thermodynamic quantities (uptake, adsorption enthalpy, and thermodynamic selectivity) and predict transport properties using data-based methods and high-throughput computational schemes. Finally, we stress the importance of data-based methods of addressing all sources of uncertainty.

The Account concludes with some perspectives about the latest developments and open questions in data-based approaches and the integration of computational and experimental data together in the materials discovery loop.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Magnetoelectrics for Implantable Bioelectronics: Progress to Date Emergent Research Trends on the Structural Relaxation Dynamics of Molecular Clusters: From Structure-Property Relationship to New Function Prediction. Chiral Organometallic Complexes Derived from Helicenic N-Heterocyclic Carbenes (NHCs): Design, Structural Diversity, and Chiroptical and Photophysical Properties. Solid-Solution MXenes: Synthesis, Properties, and Applications Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1