{"title":"通过贝叶斯分层回归分析将流程模型与响应时间联系起来。","authors":"Thea Behrens, Adrian Kühn, Frank Jäkel","doi":"10.3758/s13428-024-02400-9","DOIUrl":null,"url":null,"abstract":"<p><p>Process models specify a series of mental operations necessary to complete a task. We demonstrate how to use process models to analyze response-time data and obtain parameter estimates that have a clear psychological interpretation. A prerequisite for our analysis is a process model that generates a count of elementary information processing steps (EIP steps) for each trial of an experiment. We can estimate the duration of an EIP step by assuming that every EIP step is of random duration, modeled as draws from a gamma distribution. A natural effect of summing several random EIP steps is that the expected spread of the overall response time increases with a higher EIP step count. With modern probabilistic programming tools, it becomes relatively easy to fit Bayesian hierarchical models to data and thus estimate the duration of a step for each individual participant. We present two examples in this paper: The first example is children's performance on simple addition tasks, where the response time is often well predicted by the smaller of the two addends. The second example is response times in a Sudoku task. Here, the process model contains some random decisions and the EIP step count thus becomes latent. We show how our EIP regression model can be extended to such a case. We believe this approach can be used to bridge the gap between classical cognitive modeling and statistical inference and will be easily applicable to many use cases.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362371/pdf/","citationCount":"0","resultStr":"{\"title\":\"Connecting process models to response times through Bayesian hierarchical regression analysis.\",\"authors\":\"Thea Behrens, Adrian Kühn, Frank Jäkel\",\"doi\":\"10.3758/s13428-024-02400-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Process models specify a series of mental operations necessary to complete a task. We demonstrate how to use process models to analyze response-time data and obtain parameter estimates that have a clear psychological interpretation. A prerequisite for our analysis is a process model that generates a count of elementary information processing steps (EIP steps) for each trial of an experiment. We can estimate the duration of an EIP step by assuming that every EIP step is of random duration, modeled as draws from a gamma distribution. A natural effect of summing several random EIP steps is that the expected spread of the overall response time increases with a higher EIP step count. With modern probabilistic programming tools, it becomes relatively easy to fit Bayesian hierarchical models to data and thus estimate the duration of a step for each individual participant. We present two examples in this paper: The first example is children's performance on simple addition tasks, where the response time is often well predicted by the smaller of the two addends. The second example is response times in a Sudoku task. Here, the process model contains some random decisions and the EIP step count thus becomes latent. We show how our EIP regression model can be extended to such a case. We believe this approach can be used to bridge the gap between classical cognitive modeling and statistical inference and will be easily applicable to many use cases.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362371/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02400-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02400-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Connecting process models to response times through Bayesian hierarchical regression analysis.
Process models specify a series of mental operations necessary to complete a task. We demonstrate how to use process models to analyze response-time data and obtain parameter estimates that have a clear psychological interpretation. A prerequisite for our analysis is a process model that generates a count of elementary information processing steps (EIP steps) for each trial of an experiment. We can estimate the duration of an EIP step by assuming that every EIP step is of random duration, modeled as draws from a gamma distribution. A natural effect of summing several random EIP steps is that the expected spread of the overall response time increases with a higher EIP step count. With modern probabilistic programming tools, it becomes relatively easy to fit Bayesian hierarchical models to data and thus estimate the duration of a step for each individual participant. We present two examples in this paper: The first example is children's performance on simple addition tasks, where the response time is often well predicted by the smaller of the two addends. The second example is response times in a Sudoku task. Here, the process model contains some random decisions and the EIP step count thus becomes latent. We show how our EIP regression model can be extended to such a case. We believe this approach can be used to bridge the gap between classical cognitive modeling and statistical inference and will be easily applicable to many use cases.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.