PMBC:人工编辑的乳腺癌预后标志物数据库。

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Database: The Journal of Biological Databases and Curation Pub Date : 2024-05-15 DOI:10.1093/database/baae033
Jiabei Liu, Yiyi Yu, Mingyue Li, Yixuan Wu, Weijun Chen, Guanru Liu, Lingxian Liu, Jiechun Lin, Chujun Peng, Weijun Sun, Xiaoli Wu, Xin Chen
{"title":"PMBC:人工编辑的乳腺癌预后标志物数据库。","authors":"Jiabei Liu, Yiyi Yu, Mingyue Li, Yixuan Wu, Weijun Chen, Guanru Liu, Lingxian Liu, Jiechun Lin, Chujun Peng, Weijun Sun, Xiaoli Wu, Xin Chen","doi":"10.1093/database/baae033","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is notorious for its high mortality and heterogeneity, resulting in different therapeutic responses. Classical biomarkers have been identified and successfully commercially applied to predict the outcome of breast cancer patients. Accumulating biomarkers, including non-coding RNAs, have been reported as prognostic markers for breast cancer with the development of sequencing techniques. However, there are currently no databases dedicated to the curation and characterization of prognostic markers for breast cancer. Therefore, we constructed a curated database for prognostic markers of breast cancer (PMBC). PMBC consists of 1070 markers covering mRNAs, lncRNAs, miRNAs and circRNAs. These markers are enriched in various cancer- and epithelial-related functions including mitogen-activated protein kinases signaling. We mapped the prognostic markers into the ceRNA network from starBase. The lncRNA NEAT1 competes with 11 RNAs, including lncRNAs and mRNAs. The majority of the ceRNAs in ABAT belong to pseudogenes. The topology analysis of the ceRNA network reveals that known prognostic RNAs have higher closeness than random. Among all the biomarkers, prognostic lncRNAs have a higher degree, while prognostic mRNAs have significantly higher closeness than random RNAs. These results indicate that the lncRNAs play important roles in maintaining the interactions between lncRNAs and their ceRNAs, which might be used as a characteristic to prioritize prognostic lncRNAs based on the ceRNA network. PMBC renders a user-friendly interface and provides detailed information about individual prognostic markers, which will facilitate the precision treatment of breast cancer. PMBC is available at the following URL: http://www.pmbreastcancer.com/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095525/pdf/","citationCount":"0","resultStr":"{\"title\":\"PMBC: a manually curated database for prognostic markers of breast cancer.\",\"authors\":\"Jiabei Liu, Yiyi Yu, Mingyue Li, Yixuan Wu, Weijun Chen, Guanru Liu, Lingxian Liu, Jiechun Lin, Chujun Peng, Weijun Sun, Xiaoli Wu, Xin Chen\",\"doi\":\"10.1093/database/baae033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is notorious for its high mortality and heterogeneity, resulting in different therapeutic responses. Classical biomarkers have been identified and successfully commercially applied to predict the outcome of breast cancer patients. Accumulating biomarkers, including non-coding RNAs, have been reported as prognostic markers for breast cancer with the development of sequencing techniques. However, there are currently no databases dedicated to the curation and characterization of prognostic markers for breast cancer. Therefore, we constructed a curated database for prognostic markers of breast cancer (PMBC). PMBC consists of 1070 markers covering mRNAs, lncRNAs, miRNAs and circRNAs. These markers are enriched in various cancer- and epithelial-related functions including mitogen-activated protein kinases signaling. We mapped the prognostic markers into the ceRNA network from starBase. The lncRNA NEAT1 competes with 11 RNAs, including lncRNAs and mRNAs. The majority of the ceRNAs in ABAT belong to pseudogenes. The topology analysis of the ceRNA network reveals that known prognostic RNAs have higher closeness than random. Among all the biomarkers, prognostic lncRNAs have a higher degree, while prognostic mRNAs have significantly higher closeness than random RNAs. These results indicate that the lncRNAs play important roles in maintaining the interactions between lncRNAs and their ceRNAs, which might be used as a characteristic to prioritize prognostic lncRNAs based on the ceRNA network. PMBC renders a user-friendly interface and provides detailed information about individual prognostic markers, which will facilitate the precision treatment of breast cancer. PMBC is available at the following URL: http://www.pmbreastcancer.com/.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2024 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae033\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌因其死亡率高和异质性导致不同的治疗反应而臭名昭著。经典的生物标志物已被发现并成功应用于商业领域,以预测乳腺癌患者的预后。随着测序技术的发展,包括非编码 RNA 在内的越来越多的生物标志物被报道为乳腺癌的预后标志物。然而,目前还没有专门用于整理和表征乳腺癌预后标志物的数据库。因此,我们构建了一个乳腺癌预后标志物的策划数据库(PMBC)。PMBC 由 1070 个标记物组成,涵盖 mRNA、lncRNA、miRNA 和 circRNA。这些标记物富含各种癌症和上皮相关功能,包括丝裂原活化蛋白激酶信号转导。我们将预后标志物映射到 starBase 的 ceRNA 网络中。lncRNA NEAT1与11种RNA(包括lncRNA和mRNA)竞争。ABAT中的大部分ceRNA属于假基因。ceRNA网络的拓扑分析表明,已知的预后RNA比随机RNA具有更高的亲缘关系。在所有生物标志物中,预后lncRNA的亲和度较高,而预后mRNA的亲和度明显高于随机RNA。这些结果表明,lncRNAs在维持lncRNAs与其ceRNAs之间的相互作用方面发挥着重要作用,这可以作为根据ceRNA网络优先选择预后lncRNAs的特征。PMBC 界面友好,可提供有关单个预后标志物的详细信息,有助于乳腺癌的精准治疗。PMBC的网址如下:http://www.pmbreastcancer.com/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PMBC: a manually curated database for prognostic markers of breast cancer.

Breast cancer is notorious for its high mortality and heterogeneity, resulting in different therapeutic responses. Classical biomarkers have been identified and successfully commercially applied to predict the outcome of breast cancer patients. Accumulating biomarkers, including non-coding RNAs, have been reported as prognostic markers for breast cancer with the development of sequencing techniques. However, there are currently no databases dedicated to the curation and characterization of prognostic markers for breast cancer. Therefore, we constructed a curated database for prognostic markers of breast cancer (PMBC). PMBC consists of 1070 markers covering mRNAs, lncRNAs, miRNAs and circRNAs. These markers are enriched in various cancer- and epithelial-related functions including mitogen-activated protein kinases signaling. We mapped the prognostic markers into the ceRNA network from starBase. The lncRNA NEAT1 competes with 11 RNAs, including lncRNAs and mRNAs. The majority of the ceRNAs in ABAT belong to pseudogenes. The topology analysis of the ceRNA network reveals that known prognostic RNAs have higher closeness than random. Among all the biomarkers, prognostic lncRNAs have a higher degree, while prognostic mRNAs have significantly higher closeness than random RNAs. These results indicate that the lncRNAs play important roles in maintaining the interactions between lncRNAs and their ceRNAs, which might be used as a characteristic to prioritize prognostic lncRNAs based on the ceRNA network. PMBC renders a user-friendly interface and provides detailed information about individual prognostic markers, which will facilitate the precision treatment of breast cancer. PMBC is available at the following URL: http://www.pmbreastcancer.com/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
期刊最新文献
BuffExDb: web-based tissue-specific gene expression resource for breeding and conservation programmes in Bubalus bubalis. Standardized pipelines support and facilitate integration of diverse datasets at the Rat Genome Database. A change language for ontologies and knowledge graphs. Correction to: The landscape of microRNA interaction annotation: analysis of three rare disorders as a case study. LSD600: the first corpus of biomedical abstracts annotated with lifestyle-disease relations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1