"RNSP(Rannasangpei)"通过氧化应激和 BDNF-TrkB/Akt 通路挽救 MK-801 诱导的小鼠精神分裂症样行为。

IF 4.6 2区 医学 Q1 NEUROSCIENCES Molecular Neurobiology Pub Date : 2024-12-01 Epub Date: 2024-05-16 DOI:10.1007/s12035-024-04213-5
Yongbiao Li, Zhen Nie, Yang Du, Lei Chen, Qingshan Liu, Xiaoling Wu, Yong Cheng
{"title":"\"RNSP(Rannasangpei)\"通过氧化应激和 BDNF-TrkB/Akt 通路挽救 MK-801 诱导的小鼠精神分裂症样行为。","authors":"Yongbiao Li, Zhen Nie, Yang Du, Lei Chen, Qingshan Liu, Xiaoling Wu, Yong Cheng","doi":"10.1007/s12035-024-04213-5","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia (SCZ) is a complex, severe psychotic disorder that is highly persistent. Patients often cannot control their emotions and have delusions of victimization, world-weariness, and even suicide. Therefore, safer and more effective drugs are urgently needed. Rannasangpei (RNSP) from \"the four medicine tantras\" was used as a neuroprotective agent. The objective of this study was to investigate the effect and mechanism of RNSP on MK-801-induced SCZ in mice. Fifty C57BL/6J mice were randomly divided into a normal group, a model group, an RNSP group, a crocin (CRO) group, and an olanzapine (OLA) group, except for the normal group. The remaining mice were used to establish the MK-801-induced SCZ model. Changes in positive symptoms and cognitive impairment in mice before and after drug intervention were assessed by using the prepulse inhibition (PPI) test, Y-maze test (YMT), and open-field test (OFT). Intragastric administration of RNSP alleviated the symptoms of SCZ in SCZ mice, as demonstrated by the PPI, YMT, and OFT results. Compared with the model group, the first-line antipsychotic olanzapine reversed the anxiety-like phenotypes, hypermotility, and PPI deficits in the SCZ model mice. Further analysis revealed that RNSP reduced oxidative stress in SCZ model mice, as evidenced by increased superoxide dismutase (SOD) levels and decreased malondialdehyde (MDA) levels in the hippocampus, cortex, and blood of SCZ model mice. In our study, RNSP treatment restored the expression of brain-derived neurotrophic factor (BDNF), dopamine D2 receptor, p-Trkb, Akt/p-Akt, and doublecortin and inhibited the expression of IBA1 and Bax in the hippocampus of SCZ model mice. The polymerase chain reaction data indicated that RNSP treatment increased the expression of Bcl-2 and TGF-β and decreased the expression of Bax, IL-1β, and TNF-α in the brains of the model mice. Our results are the first to show that RNSP reverses SCZ-like behaviors in rodents (both positive symptoms and cognitive deficits) by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway, suggesting that RNSP is a novel approach for treating SCZ.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10538-10550"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"RNSP (Rannasangpei)\\\" Rescued MK-801-induced Schizophrenia-like Behaviors in Mice via Oxidative Stress and BDNF-TrkB/Akt Pathway.\",\"authors\":\"Yongbiao Li, Zhen Nie, Yang Du, Lei Chen, Qingshan Liu, Xiaoling Wu, Yong Cheng\",\"doi\":\"10.1007/s12035-024-04213-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia (SCZ) is a complex, severe psychotic disorder that is highly persistent. Patients often cannot control their emotions and have delusions of victimization, world-weariness, and even suicide. Therefore, safer and more effective drugs are urgently needed. Rannasangpei (RNSP) from \\\"the four medicine tantras\\\" was used as a neuroprotective agent. The objective of this study was to investigate the effect and mechanism of RNSP on MK-801-induced SCZ in mice. Fifty C57BL/6J mice were randomly divided into a normal group, a model group, an RNSP group, a crocin (CRO) group, and an olanzapine (OLA) group, except for the normal group. The remaining mice were used to establish the MK-801-induced SCZ model. Changes in positive symptoms and cognitive impairment in mice before and after drug intervention were assessed by using the prepulse inhibition (PPI) test, Y-maze test (YMT), and open-field test (OFT). Intragastric administration of RNSP alleviated the symptoms of SCZ in SCZ mice, as demonstrated by the PPI, YMT, and OFT results. Compared with the model group, the first-line antipsychotic olanzapine reversed the anxiety-like phenotypes, hypermotility, and PPI deficits in the SCZ model mice. Further analysis revealed that RNSP reduced oxidative stress in SCZ model mice, as evidenced by increased superoxide dismutase (SOD) levels and decreased malondialdehyde (MDA) levels in the hippocampus, cortex, and blood of SCZ model mice. In our study, RNSP treatment restored the expression of brain-derived neurotrophic factor (BDNF), dopamine D2 receptor, p-Trkb, Akt/p-Akt, and doublecortin and inhibited the expression of IBA1 and Bax in the hippocampus of SCZ model mice. The polymerase chain reaction data indicated that RNSP treatment increased the expression of Bcl-2 and TGF-β and decreased the expression of Bax, IL-1β, and TNF-α in the brains of the model mice. Our results are the first to show that RNSP reverses SCZ-like behaviors in rodents (both positive symptoms and cognitive deficits) by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway, suggesting that RNSP is a novel approach for treating SCZ.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"10538-10550\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04213-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04213-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症(SCZ)是一种复杂、严重的精神障碍,具有高度顽固性。患者往往无法控制自己的情绪,产生被害妄想、厌世甚至自杀。因此,迫切需要更安全、更有效的药物。来自 "四药密宗 "的兰那桑培(RNSP)被用作神经保护剂。本研究旨在探讨 RNSP 对 MK-801 诱导的小鼠 SCZ 的影响和机制。将 50 只 C57BL/6J 小鼠随机分为正常组、模型组、RNSP 组、巴豆苷(CRO)组和奥氮平(OLA)组。其余小鼠用于建立MK-801诱导的SCZ模型。通过前脉冲抑制(PPI)试验、Y迷宫试验(YMT)和开阔地试验(OFT)评估药物干预前后小鼠阳性症状和认知障碍的变化。PPI、YMT和OFT结果表明,胃内给药RNSP减轻了SCZ小鼠的SCZ症状。与模型组相比,一线抗精神病药奥氮平逆转了SCZ模型小鼠的焦虑样表型、高运动性和PPI缺陷。进一步的分析表明,RNSP降低了SCZ模型小鼠的氧化应激,这体现在SCZ模型小鼠海马、皮层和血液中超氧化物歧化酶(SOD)水平的升高和丙二醛(MDA)水平的降低。在我们的研究中,RNSP 治疗可恢复 SCZ 模型小鼠海马中脑源性神经营养因子(BDNF)、多巴胺 D2 受体、p-Trkb、Akt/p-Akt 和双皮质素的表达,并抑制 IBA1 和 Bax 的表达。聚合酶链式反应数据表明,RNSP处理可增加模型小鼠大脑中Bcl-2和TGF-β的表达,降低Bax、IL-1β和TNF-α的表达。我们的研究结果首次表明,RNSP能通过减少氧化应激和激活BDNF-TrkB/Akt通路逆转啮齿类动物的SCZ样行为(包括阳性症状和认知障碍),这表明RNSP是治疗SCZ的一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
"RNSP (Rannasangpei)" Rescued MK-801-induced Schizophrenia-like Behaviors in Mice via Oxidative Stress and BDNF-TrkB/Akt Pathway.

Schizophrenia (SCZ) is a complex, severe psychotic disorder that is highly persistent. Patients often cannot control their emotions and have delusions of victimization, world-weariness, and even suicide. Therefore, safer and more effective drugs are urgently needed. Rannasangpei (RNSP) from "the four medicine tantras" was used as a neuroprotective agent. The objective of this study was to investigate the effect and mechanism of RNSP on MK-801-induced SCZ in mice. Fifty C57BL/6J mice were randomly divided into a normal group, a model group, an RNSP group, a crocin (CRO) group, and an olanzapine (OLA) group, except for the normal group. The remaining mice were used to establish the MK-801-induced SCZ model. Changes in positive symptoms and cognitive impairment in mice before and after drug intervention were assessed by using the prepulse inhibition (PPI) test, Y-maze test (YMT), and open-field test (OFT). Intragastric administration of RNSP alleviated the symptoms of SCZ in SCZ mice, as demonstrated by the PPI, YMT, and OFT results. Compared with the model group, the first-line antipsychotic olanzapine reversed the anxiety-like phenotypes, hypermotility, and PPI deficits in the SCZ model mice. Further analysis revealed that RNSP reduced oxidative stress in SCZ model mice, as evidenced by increased superoxide dismutase (SOD) levels and decreased malondialdehyde (MDA) levels in the hippocampus, cortex, and blood of SCZ model mice. In our study, RNSP treatment restored the expression of brain-derived neurotrophic factor (BDNF), dopamine D2 receptor, p-Trkb, Akt/p-Akt, and doublecortin and inhibited the expression of IBA1 and Bax in the hippocampus of SCZ model mice. The polymerase chain reaction data indicated that RNSP treatment increased the expression of Bcl-2 and TGF-β and decreased the expression of Bax, IL-1β, and TNF-α in the brains of the model mice. Our results are the first to show that RNSP reverses SCZ-like behaviors in rodents (both positive symptoms and cognitive deficits) by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway, suggesting that RNSP is a novel approach for treating SCZ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
期刊最新文献
Retraction Note to: Learning Impairments, Memory Deficits, and Neuropathology in Aged Tau Transgenic Mice Are Dependent on Leukotrienes Biosynthesis: Role of the cdk5 Kinase Pathway. Retraction Note to: LPS Pretreatment Provides Neuroprotective Roles in Rats with Subarachnoid Hemorrhage by Downregulating MMP9 and Caspase3 Associated with TLR4 Signaling Activation. Retraction Note to: Rapamycin Augments Immunomodulatory Properties of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Abnormal Changes of IL3/IL3R and Its Downstream Signaling Pathways in the Prion-Infected Cell Line and in the Brains of Scrapie-Infected Rodents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1