Lin Guo, Ziyu Liu, Xiaoxia Jia, Qinghua Wang, Jianlun Ji, Na Lv, Zhidong Liu, Qin Zhou, Congcong Sun, Yun Wang
{"title":"线粒体蛋白质 TAMM41 调节抑郁样行为","authors":"Lin Guo, Ziyu Liu, Xiaoxia Jia, Qinghua Wang, Jianlun Ji, Na Lv, Zhidong Liu, Qin Zhou, Congcong Sun, Yun Wang","doi":"10.1007/s12035-024-04233-1","DOIUrl":null,"url":null,"abstract":"<p><p>Several lines of evidence have highlighted the crucial role of mitochondria-based therapy in depression. However, there are still less mitochondrial targets for the depression treatment. TAM41 mitochondrial translocator assembly and maintenance homolog (TAMM41) is a mitochondrial inner membrane protein for maintaining mitochondrial function, which is tightly related to many brain diseases including Alzheimer's diseases and epilepsy. Here, we investigated whether TAMM41 would be a potential target to treat depression. We found that the expression of TAMM41 was markedly lower in corticosterone-induced depression, lipopolysaccharide-induced depression, and depressed patients. Meanwhile, loss of TAMM41 resulted in increased immobility in the forced swim test (FST), tail suspension test (TST), and center time in open field test (OFT), suggesting depressive-like behaviors in mice. Moreover, genetic overexpression of TAMM41 obviously exerted antidepressant-like activities. Mechanistically, proteomics revealed that pacsin1 might be the underlying target of TAMM41. Further data supported that TAMM41 regulated the expression of pacsin1, and its antidepressant-like effect at least partially was attributed to pacsin1. In addition, exosomes containing TAMM41 was sufficient to exhibit antidepressant-like effect, suggesting an alternative strategy to exert the effect of TAMM41. Taken together, the present study demonstrates the antidepressant-like effect of TAMM41 and sheds light on its molecular mechanism. These finding provide new insights into a therapeutic strategy targeting mitochondria in the development of novel antidepressants.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10561-10573"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial Protein TAMM41 Modulates Depressive-like Behaviors.\",\"authors\":\"Lin Guo, Ziyu Liu, Xiaoxia Jia, Qinghua Wang, Jianlun Ji, Na Lv, Zhidong Liu, Qin Zhou, Congcong Sun, Yun Wang\",\"doi\":\"10.1007/s12035-024-04233-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several lines of evidence have highlighted the crucial role of mitochondria-based therapy in depression. However, there are still less mitochondrial targets for the depression treatment. TAM41 mitochondrial translocator assembly and maintenance homolog (TAMM41) is a mitochondrial inner membrane protein for maintaining mitochondrial function, which is tightly related to many brain diseases including Alzheimer's diseases and epilepsy. Here, we investigated whether TAMM41 would be a potential target to treat depression. We found that the expression of TAMM41 was markedly lower in corticosterone-induced depression, lipopolysaccharide-induced depression, and depressed patients. Meanwhile, loss of TAMM41 resulted in increased immobility in the forced swim test (FST), tail suspension test (TST), and center time in open field test (OFT), suggesting depressive-like behaviors in mice. Moreover, genetic overexpression of TAMM41 obviously exerted antidepressant-like activities. Mechanistically, proteomics revealed that pacsin1 might be the underlying target of TAMM41. Further data supported that TAMM41 regulated the expression of pacsin1, and its antidepressant-like effect at least partially was attributed to pacsin1. In addition, exosomes containing TAMM41 was sufficient to exhibit antidepressant-like effect, suggesting an alternative strategy to exert the effect of TAMM41. Taken together, the present study demonstrates the antidepressant-like effect of TAMM41 and sheds light on its molecular mechanism. These finding provide new insights into a therapeutic strategy targeting mitochondria in the development of novel antidepressants.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"10561-10573\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04233-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04233-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mitochondrial Protein TAMM41 Modulates Depressive-like Behaviors.
Several lines of evidence have highlighted the crucial role of mitochondria-based therapy in depression. However, there are still less mitochondrial targets for the depression treatment. TAM41 mitochondrial translocator assembly and maintenance homolog (TAMM41) is a mitochondrial inner membrane protein for maintaining mitochondrial function, which is tightly related to many brain diseases including Alzheimer's diseases and epilepsy. Here, we investigated whether TAMM41 would be a potential target to treat depression. We found that the expression of TAMM41 was markedly lower in corticosterone-induced depression, lipopolysaccharide-induced depression, and depressed patients. Meanwhile, loss of TAMM41 resulted in increased immobility in the forced swim test (FST), tail suspension test (TST), and center time in open field test (OFT), suggesting depressive-like behaviors in mice. Moreover, genetic overexpression of TAMM41 obviously exerted antidepressant-like activities. Mechanistically, proteomics revealed that pacsin1 might be the underlying target of TAMM41. Further data supported that TAMM41 regulated the expression of pacsin1, and its antidepressant-like effect at least partially was attributed to pacsin1. In addition, exosomes containing TAMM41 was sufficient to exhibit antidepressant-like effect, suggesting an alternative strategy to exert the effect of TAMM41. Taken together, the present study demonstrates the antidepressant-like effect of TAMM41 and sheds light on its molecular mechanism. These finding provide new insights into a therapeutic strategy targeting mitochondria in the development of novel antidepressants.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.