强心苷齐墩果素可抑制子宫内膜癌细胞的 EMT 能力

IF 1.5 Q3 MEDICINE, RESEARCH & EXPERIMENTAL International Journal of Molecular and Cellular Medicine Pub Date : 2023-01-01 DOI:10.22088/IJMCM.BUMS.12.3.220
Fatma Secer Celik, Canan Eroglu Gunes, Ercan Kurar
{"title":"强心苷齐墩果素可抑制子宫内膜癌细胞的 EMT 能力","authors":"Fatma Secer Celik, Canan Eroglu Gunes, Ercan Kurar","doi":"10.22088/IJMCM.BUMS.12.3.220","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial carcinoma is one of the most common types of cancer among women. The progression of cancer occurs via the Epithelial- Mesenchymal Transition (EMT) pathway. Cells lose their epithelial properties and become mobile. For this reason, the EMT process is one of the most important step to be targeted in cancer treatment. Oleandrin is a cardiac glycoside and its use is limited due to its narrow therapeutic index. In this study, we aimed to evaluate effects of lower level Oleandrin doses on EMT process in endometrial carcinoma. Oleandrin was administrated to Ishikawa endometrial adenocarcinoma cells at different doses and times. IC<sub>50</sub> dose was determined by XTT proliferation test. Expression analysis of EMT-related genes was then performed by qRT-PCR. Invasion and colony formation abilities of cells were examined microscopically. Finally, the migration analysis of cancer cells was determined by the Wound Healing Assay. The IC<sub>50</sub> dose of Oleandrin applied to Ishikawa cells was determined as 75.3 nM at the 48 h. According to qRT-PCR analysis, expression levels of ZEB1, FN1, ITGB1, VIM, SMAD2, SNAI1, SNAI2, SNAI3, and TGFB3 genes significantly decreased, but TIMP2, TIMP3, ITGAV and GSK3B genes significantly increased. In addition, Oleandrin significantly reduced colony formation and invasion of Ishikawa cells. According to the Wound Healing analysis, the migratory abilities of the Oleandrin-treated cells were reduced compared to the control. Low dose Oleandrin suppresses the EMT pathway in Ishikawa cells. It has been shown that Oleandrin significantly suppresses the cell's colony formation, invasion and migration ability both in gene expression analyzes and microscopically.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092899/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cardiac Glycoside Oleandrin Suppresses EMT Ability in Endometrial Carcinoma Cells.\",\"authors\":\"Fatma Secer Celik, Canan Eroglu Gunes, Ercan Kurar\",\"doi\":\"10.22088/IJMCM.BUMS.12.3.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometrial carcinoma is one of the most common types of cancer among women. The progression of cancer occurs via the Epithelial- Mesenchymal Transition (EMT) pathway. Cells lose their epithelial properties and become mobile. For this reason, the EMT process is one of the most important step to be targeted in cancer treatment. Oleandrin is a cardiac glycoside and its use is limited due to its narrow therapeutic index. In this study, we aimed to evaluate effects of lower level Oleandrin doses on EMT process in endometrial carcinoma. Oleandrin was administrated to Ishikawa endometrial adenocarcinoma cells at different doses and times. IC<sub>50</sub> dose was determined by XTT proliferation test. Expression analysis of EMT-related genes was then performed by qRT-PCR. Invasion and colony formation abilities of cells were examined microscopically. Finally, the migration analysis of cancer cells was determined by the Wound Healing Assay. The IC<sub>50</sub> dose of Oleandrin applied to Ishikawa cells was determined as 75.3 nM at the 48 h. According to qRT-PCR analysis, expression levels of ZEB1, FN1, ITGB1, VIM, SMAD2, SNAI1, SNAI2, SNAI3, and TGFB3 genes significantly decreased, but TIMP2, TIMP3, ITGAV and GSK3B genes significantly increased. In addition, Oleandrin significantly reduced colony formation and invasion of Ishikawa cells. According to the Wound Healing analysis, the migratory abilities of the Oleandrin-treated cells were reduced compared to the control. Low dose Oleandrin suppresses the EMT pathway in Ishikawa cells. It has been shown that Oleandrin significantly suppresses the cell's colony formation, invasion and migration ability both in gene expression analyzes and microscopically.</p>\",\"PeriodicalId\":14152,\"journal\":{\"name\":\"International Journal of Molecular and Cellular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092899/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular and Cellular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22088/IJMCM.BUMS.12.3.220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.12.3.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜癌是女性最常见的癌症类型之一。癌症的发展是通过上皮-间质转化(EMT)途径进行的。细胞失去上皮特性,变得具有流动性。因此,EMT 过程是癌症治疗中最重要的靶向步骤之一。齐墩果素是一种强心苷,由于其治疗指数较窄,其使用受到了限制。本研究旨在评估较低剂量的齐墩果素对子宫内膜癌 EMT 过程的影响。我们以不同的剂量和时间向石川子宫内膜腺癌细胞施用齐墩果素。通过 XTT 增殖试验确定 IC50 剂量。然后通过 qRT-PCR 进行 EMT 相关基因的表达分析。显微镜下检测细胞的侵袭和集落形成能力。最后,通过伤口愈合试验确定了癌细胞的迁移分析。根据 qRT-PCR 分析,ZEB1、FN1、ITGB1、VIM、SMAD2、SNAI1、SNAI2、SNAI3 和 TGFB3 基因的表达水平显著下降,但 TIMP2、TIMP3、ITGAV 和 GSK3B 基因的表达水平显著上升。此外,齐墩果素还能明显减少石川细胞的集落形成和侵袭。根据伤口愈合分析,与对照组相比,奥利司他处理的细胞迁移能力降低。低剂量齐墩果素可抑制石川细胞的 EMT 通路。研究表明,无论是从基因表达分析还是显微镜观察,齐墩果素都能显著抑制细胞的集落形成、侵袭和迁移能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cardiac Glycoside Oleandrin Suppresses EMT Ability in Endometrial Carcinoma Cells.

Endometrial carcinoma is one of the most common types of cancer among women. The progression of cancer occurs via the Epithelial- Mesenchymal Transition (EMT) pathway. Cells lose their epithelial properties and become mobile. For this reason, the EMT process is one of the most important step to be targeted in cancer treatment. Oleandrin is a cardiac glycoside and its use is limited due to its narrow therapeutic index. In this study, we aimed to evaluate effects of lower level Oleandrin doses on EMT process in endometrial carcinoma. Oleandrin was administrated to Ishikawa endometrial adenocarcinoma cells at different doses and times. IC50 dose was determined by XTT proliferation test. Expression analysis of EMT-related genes was then performed by qRT-PCR. Invasion and colony formation abilities of cells were examined microscopically. Finally, the migration analysis of cancer cells was determined by the Wound Healing Assay. The IC50 dose of Oleandrin applied to Ishikawa cells was determined as 75.3 nM at the 48 h. According to qRT-PCR analysis, expression levels of ZEB1, FN1, ITGB1, VIM, SMAD2, SNAI1, SNAI2, SNAI3, and TGFB3 genes significantly decreased, but TIMP2, TIMP3, ITGAV and GSK3B genes significantly increased. In addition, Oleandrin significantly reduced colony formation and invasion of Ishikawa cells. According to the Wound Healing analysis, the migratory abilities of the Oleandrin-treated cells were reduced compared to the control. Low dose Oleandrin suppresses the EMT pathway in Ishikawa cells. It has been shown that Oleandrin significantly suppresses the cell's colony formation, invasion and migration ability both in gene expression analyzes and microscopically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).
期刊最新文献
Cytoprotective Effect of Gallic Acid against Injuries Promoted by Therapeutic Ionizing Radiation in Preosteoblast Cells. Dysregulation of LncRNAs ANRIL, MALAT1, and LINC00305 in Coronary Slow Flow Patients: Implications for Inflammation and Endothelial Dysfunction. Evaluation of the Cytotoxicity of Secondary Bioactive Compounds Produced by Streptomyces in Soil against a Colon Cancer Cell Line. Evaluation of the Immune Checkpoints, TIM-3 and PD-1, as well as Anti-Inflammatory Cytokines IL-10, and TGF-β along with Diseases Activity in Chronic Spontaneous Urticaria. Evaluations of Biomarkers CDX1 and CDX2 in Gastric Cancer Prognosis: A Meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1