{"title":"接种五价与六价疫苗后,白喉类毒素、破伤风类毒素、百日咳杆菌抗原和 b 型流感嗜血杆菌的抗体持续性。","authors":"Nasamon Wanlapakorn, Nasiri Sarawanangkoor, Donchida Srimuan, Thaksaporn Thatsanathorn, Thanunrat Thongmee, Yong Poovorawan","doi":"10.1080/21645515.2024.2352909","DOIUrl":null,"url":null,"abstract":"<p><p>Thailand has incorporated the whole-cell (wP) pertussis vaccine into the expanded program on immunization since 1977 and has offered the acellular pertussis (aP) vaccine as an optional vaccine for infants since 2001. We followed healthy children from a clinical trial (ClinicalTrials.gov NCT02408926) in which children were randomly assigned to receive either pentavalent (DTwP-HB-Hib) or hexavalent (DTaP-IPV-HB-Hib) vaccines for their primary series (administered at 2, 4, and 6 months) and first booster vaccination (18 months). Both groups received Tdap-IPV as a second booster at the age of 4 y. Blood samples were collected for evaluation of antibody persistence to diphtheria toxoid (DT), tetanus toxoid (TT), and <i>Bordetella pertussis</i> (<i>B. pertussis</i>) between 2 and 6 y of age annually, and for the immunogenicity study of Tdap-IPV at 1 month after the second booster. Antibody persistence to <i>Haemophilus influenzae</i> type b (Hib) was followed until 3 y of age. A total of 105 hexavalent-vaccinated children and 91 pentavalent-vaccinated children completed this study. Both pentavalent and hexavalent groups demonstrated increased antibody levels against DT, TT, and <i>B. pertussis</i> antigens following the second booster with Tdap-IPV. All children achieved a seroprotective concentration for anti-DT and anti-TT IgG at 1 month post booster. The hexavalent group possessed significantly higher anti-pertactin IgG (adjusted <i>p</i> = .023), whereas the pentavalent group possessed significantly higher anti-pertussis toxin IgG (adjusted <i>p</i> < .001) after the second booster. Despite declining levels post-second booster, a greater number of children sustained protective levels of anti-DT and anti-TT IgG compared to those after the first booster.</p>","PeriodicalId":49067,"journal":{"name":"Human Vaccines & Immunotherapeutics","volume":"20 1","pages":"2352909"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibody persistence to diphtheria toxoid, tetanus toxoid, <i>Bordetella pertussis</i> antigens, and <i>Haemophilus influenzae</i> type b following primary and first booster with pentavalent versus hexavalent vaccines.\",\"authors\":\"Nasamon Wanlapakorn, Nasiri Sarawanangkoor, Donchida Srimuan, Thaksaporn Thatsanathorn, Thanunrat Thongmee, Yong Poovorawan\",\"doi\":\"10.1080/21645515.2024.2352909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thailand has incorporated the whole-cell (wP) pertussis vaccine into the expanded program on immunization since 1977 and has offered the acellular pertussis (aP) vaccine as an optional vaccine for infants since 2001. We followed healthy children from a clinical trial (ClinicalTrials.gov NCT02408926) in which children were randomly assigned to receive either pentavalent (DTwP-HB-Hib) or hexavalent (DTaP-IPV-HB-Hib) vaccines for their primary series (administered at 2, 4, and 6 months) and first booster vaccination (18 months). Both groups received Tdap-IPV as a second booster at the age of 4 y. Blood samples were collected for evaluation of antibody persistence to diphtheria toxoid (DT), tetanus toxoid (TT), and <i>Bordetella pertussis</i> (<i>B. pertussis</i>) between 2 and 6 y of age annually, and for the immunogenicity study of Tdap-IPV at 1 month after the second booster. Antibody persistence to <i>Haemophilus influenzae</i> type b (Hib) was followed until 3 y of age. A total of 105 hexavalent-vaccinated children and 91 pentavalent-vaccinated children completed this study. Both pentavalent and hexavalent groups demonstrated increased antibody levels against DT, TT, and <i>B. pertussis</i> antigens following the second booster with Tdap-IPV. All children achieved a seroprotective concentration for anti-DT and anti-TT IgG at 1 month post booster. The hexavalent group possessed significantly higher anti-pertactin IgG (adjusted <i>p</i> = .023), whereas the pentavalent group possessed significantly higher anti-pertussis toxin IgG (adjusted <i>p</i> < .001) after the second booster. Despite declining levels post-second booster, a greater number of children sustained protective levels of anti-DT and anti-TT IgG compared to those after the first booster.</p>\",\"PeriodicalId\":49067,\"journal\":{\"name\":\"Human Vaccines & Immunotherapeutics\",\"volume\":\"20 1\",\"pages\":\"2352909\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Vaccines & Immunotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/21645515.2024.2352909\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Vaccines & Immunotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/21645515.2024.2352909","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Antibody persistence to diphtheria toxoid, tetanus toxoid, Bordetella pertussis antigens, and Haemophilus influenzae type b following primary and first booster with pentavalent versus hexavalent vaccines.
Thailand has incorporated the whole-cell (wP) pertussis vaccine into the expanded program on immunization since 1977 and has offered the acellular pertussis (aP) vaccine as an optional vaccine for infants since 2001. We followed healthy children from a clinical trial (ClinicalTrials.gov NCT02408926) in which children were randomly assigned to receive either pentavalent (DTwP-HB-Hib) or hexavalent (DTaP-IPV-HB-Hib) vaccines for their primary series (administered at 2, 4, and 6 months) and first booster vaccination (18 months). Both groups received Tdap-IPV as a second booster at the age of 4 y. Blood samples were collected for evaluation of antibody persistence to diphtheria toxoid (DT), tetanus toxoid (TT), and Bordetella pertussis (B. pertussis) between 2 and 6 y of age annually, and for the immunogenicity study of Tdap-IPV at 1 month after the second booster. Antibody persistence to Haemophilus influenzae type b (Hib) was followed until 3 y of age. A total of 105 hexavalent-vaccinated children and 91 pentavalent-vaccinated children completed this study. Both pentavalent and hexavalent groups demonstrated increased antibody levels against DT, TT, and B. pertussis antigens following the second booster with Tdap-IPV. All children achieved a seroprotective concentration for anti-DT and anti-TT IgG at 1 month post booster. The hexavalent group possessed significantly higher anti-pertactin IgG (adjusted p = .023), whereas the pentavalent group possessed significantly higher anti-pertussis toxin IgG (adjusted p < .001) after the second booster. Despite declining levels post-second booster, a greater number of children sustained protective levels of anti-DT and anti-TT IgG compared to those after the first booster.
期刊介绍:
(formerly Human Vaccines; issn 1554-8619)
Vaccine research and development is extending its reach beyond the prevention of bacterial or viral diseases. There are experimental vaccines for immunotherapeutic purposes and for applications outside of infectious diseases, in diverse fields such as cancer, autoimmunity, allergy, Alzheimer’s and addiction. Many of these vaccines and immunotherapeutics should become available in the next two decades, with consequent benefit for human health. Continued advancement in this field will benefit from a forum that can (A) help to promote interest by keeping investigators updated, and (B) enable an exchange of ideas regarding the latest progress in the many topics pertaining to vaccines and immunotherapeutics.
Human Vaccines & Immunotherapeutics provides such a forum. It is published monthly in a format that is accessible to a wide international audience in the academic, industrial and public sectors.