异构多核实时系统上的高能效三模块冗余调度

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-05-13 DOI:10.1016/j.jpdc.2024.104915
Hongzhi Xu , Binlian Zhang , Chen Pan , Keqin Li
{"title":"异构多核实时系统上的高能效三模块冗余调度","authors":"Hongzhi Xu ,&nbsp;Binlian Zhang ,&nbsp;Chen Pan ,&nbsp;Keqin Li","doi":"10.1016/j.jpdc.2024.104915","DOIUrl":null,"url":null,"abstract":"<div><p>Triple modular redundancy (TMR) fault tolerance mechanism can provide almost perfect fault-masking, which has the great potential to enhance the reliability of real-time systems. However, multiple copies of a task are executed concurrently, which will lead to a sharp increase in system energy consumption. In this work, the problem of parallel applications using TMR on heterogeneous multi-core platforms to minimize energy consumption is studied. First, the heterogeneous earliest finish time algorithm is improved, and then according to the given application's deadline constraints and reliability requirements, an algorithm to extend the execution time of the copies is designed. Secondly, based on the properties of TMR, an algorithm for minimizing the execution overhead of the third copy (MEOTC) is designed. Finally, considering the actual situation of task execution, an online energy management (OEM) method is proposed. The proposed algorithms were compared with the state-of-the-art AFTSA algorithm, and the results show significant differences in energy consumption. Specifically, for light fault detection, the energy consumption of the MEOTC and OEM algorithms was found to be 80% and 72% respectively, compared with AFTSA. For heavy fault detection, the energy consumption of MEOTC and OEM was measured at 61% and 55% respectively, compared with AFTSA.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient triple modular redundancy scheduling on heterogeneous multi-core real-time systems\",\"authors\":\"Hongzhi Xu ,&nbsp;Binlian Zhang ,&nbsp;Chen Pan ,&nbsp;Keqin Li\",\"doi\":\"10.1016/j.jpdc.2024.104915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triple modular redundancy (TMR) fault tolerance mechanism can provide almost perfect fault-masking, which has the great potential to enhance the reliability of real-time systems. However, multiple copies of a task are executed concurrently, which will lead to a sharp increase in system energy consumption. In this work, the problem of parallel applications using TMR on heterogeneous multi-core platforms to minimize energy consumption is studied. First, the heterogeneous earliest finish time algorithm is improved, and then according to the given application's deadline constraints and reliability requirements, an algorithm to extend the execution time of the copies is designed. Secondly, based on the properties of TMR, an algorithm for minimizing the execution overhead of the third copy (MEOTC) is designed. Finally, considering the actual situation of task execution, an online energy management (OEM) method is proposed. The proposed algorithms were compared with the state-of-the-art AFTSA algorithm, and the results show significant differences in energy consumption. Specifically, for light fault detection, the energy consumption of the MEOTC and OEM algorithms was found to be 80% and 72% respectively, compared with AFTSA. For heavy fault detection, the energy consumption of MEOTC and OEM was measured at 61% and 55% respectively, compared with AFTSA.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000790\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000790","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

三模块冗余(TMR)容错机制可以提供近乎完美的故障屏蔽,在提高实时系统可靠性方面具有巨大潜力。然而,一个任务的多个副本同时执行,会导致系统能耗急剧增加。在这项工作中,研究了在异构多核平台上使用 TMR 的并行应用以最小化能耗的问题。首先,改进了异构最早完成时间算法,然后根据给定应用的截止时间约束和可靠性要求,设计了一种延长副本执行时间的算法。其次,根据 TMR 的特性,设计了最小化第三副本执行开销(MEOTC)的算法。最后,考虑到任务执行的实际情况,提出了一种在线能量管理(OEM)方法。我们将所提出的算法与最先进的 AFTSA 算法进行了比较,结果表明两者在能耗方面存在显著差异。具体来说,在轻故障检测方面,MEOTC 算法和 OEM 算法的能耗分别比 AFTSA 算法低 80% 和 72%。在重故障检测方面,与 AFTSA 相比,MEOTC 和 OEM 的能耗分别为 61% 和 55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficient triple modular redundancy scheduling on heterogeneous multi-core real-time systems

Triple modular redundancy (TMR) fault tolerance mechanism can provide almost perfect fault-masking, which has the great potential to enhance the reliability of real-time systems. However, multiple copies of a task are executed concurrently, which will lead to a sharp increase in system energy consumption. In this work, the problem of parallel applications using TMR on heterogeneous multi-core platforms to minimize energy consumption is studied. First, the heterogeneous earliest finish time algorithm is improved, and then according to the given application's deadline constraints and reliability requirements, an algorithm to extend the execution time of the copies is designed. Secondly, based on the properties of TMR, an algorithm for minimizing the execution overhead of the third copy (MEOTC) is designed. Finally, considering the actual situation of task execution, an online energy management (OEM) method is proposed. The proposed algorithms were compared with the state-of-the-art AFTSA algorithm, and the results show significant differences in energy consumption. Specifically, for light fault detection, the energy consumption of the MEOTC and OEM algorithms was found to be 80% and 72% respectively, compared with AFTSA. For heavy fault detection, the energy consumption of MEOTC and OEM was measured at 61% and 55% respectively, compared with AFTSA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
SpEpistasis: A sparse approach for three-way epistasis detection Robust and Scalable Federated Learning Framework for Client Data Heterogeneity Based on Optimal Clustering Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Survey of federated learning in intrusion detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1