光照和草甘膦除草剂对海洋硅藻生长率的综合影响。

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY Ecotoxicology Pub Date : 2024-08-01 Epub Date: 2024-05-17 DOI:10.1007/s10646-024-02759-7
Natalia Shoman, Ekaterina Solomonova, Arkady Akimov
{"title":"光照和草甘膦除草剂对海洋硅藻生长率的综合影响。","authors":"Natalia Shoman, Ekaterina Solomonova, Arkady Akimov","doi":"10.1007/s10646-024-02759-7","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of glyphosate herbicide at concentrations of 25, 100, 150 and 200 μg.L<sup>-1</sup> on growth characteristics of diatoms C. caspia and T. weissflogii under accumulative growth conditions was investigated. Increasing herbicide concentration in the medium resulted in growth suppression of both species and decreased the final abundance of the cultures in the stationary growth phase. The calculated concentrations of herbicide EC<sub>10</sub> and EC<sub>50</sub> (10 and 90 μg.L<sup>-1</sup> for C. caspia and 7 and 25 μg·L<sup>-1</sup> for T. weissflogii, respectively) led to a 10 and 50% reduction in the abundance of the studied cultures relative to the control, are ecologically significant and correspond to the values recorded in aquatic areas. The combined effect of light (in the range of 20-250 µE.m<sup>-2</sup>.s<sup>-1</sup>) and glyphosate (calculated concentrations of EC<sub>10</sub> and EC<sub>50</sub>) on the growth characteristics of microalgae was evaluated. An increase in algal sensitivity to light was observed with glyphosate exposure. In both species, the increase in the concentration of glyphosate in the medium led to a decrease in the initial angle of slope of the light curve of growth under conditions of light limitation, a reduction in the value of light saturation of growth, narrowing of the boundaries of the light optimum and an increase in the degree of light inhibition. It is shown that the effect of the combined action of light and glyphosate exceeds the sum of the effects of each factor. This fact should be taken into account in ecotoxicological monitoring when assessing the risks of glyphosate ingress into aquatic ecosystems. An increase in glyphosate concentration in water during periods with high values of solar insolation is potentially dangerous due to a decrease in the photosynthetic activity of algae and a reduction in diatom algae abundance.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"622-629"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effect of light and glyphosate herbicide on growth rate of marine diatom algae.\",\"authors\":\"Natalia Shoman, Ekaterina Solomonova, Arkady Akimov\",\"doi\":\"10.1007/s10646-024-02759-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of glyphosate herbicide at concentrations of 25, 100, 150 and 200 μg.L<sup>-1</sup> on growth characteristics of diatoms C. caspia and T. weissflogii under accumulative growth conditions was investigated. Increasing herbicide concentration in the medium resulted in growth suppression of both species and decreased the final abundance of the cultures in the stationary growth phase. The calculated concentrations of herbicide EC<sub>10</sub> and EC<sub>50</sub> (10 and 90 μg.L<sup>-1</sup> for C. caspia and 7 and 25 μg·L<sup>-1</sup> for T. weissflogii, respectively) led to a 10 and 50% reduction in the abundance of the studied cultures relative to the control, are ecologically significant and correspond to the values recorded in aquatic areas. The combined effect of light (in the range of 20-250 µE.m<sup>-2</sup>.s<sup>-1</sup>) and glyphosate (calculated concentrations of EC<sub>10</sub> and EC<sub>50</sub>) on the growth characteristics of microalgae was evaluated. An increase in algal sensitivity to light was observed with glyphosate exposure. In both species, the increase in the concentration of glyphosate in the medium led to a decrease in the initial angle of slope of the light curve of growth under conditions of light limitation, a reduction in the value of light saturation of growth, narrowing of the boundaries of the light optimum and an increase in the degree of light inhibition. It is shown that the effect of the combined action of light and glyphosate exceeds the sum of the effects of each factor. This fact should be taken into account in ecotoxicological monitoring when assessing the risks of glyphosate ingress into aquatic ecosystems. An increase in glyphosate concentration in water during periods with high values of solar insolation is potentially dangerous due to a decrease in the photosynthetic activity of algae and a reduction in diatom algae abundance.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"622-629\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02759-7\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02759-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了草甘膦除草剂浓度为 25、100、150 和 200 μg.L-1 时对累积生长条件下硅藻 C. caspia 和 T. weissflogii 生长特征的影响。随着培养基中除草剂浓度的增加,两种硅藻的生长均受到抑制,并降低了静止生长期培养物的最终丰度。计算得出的除草剂 EC10 和 EC50 浓度(C. caspia 分别为 10 和 90 μg.L-1,T. weissflogii 分别为 7 和 25 μg-L-1)导致所研究培养物的丰度相对于对照分别降低了 10%和 50%,具有重要的生态意义,与水生地区的记录值相符。评估了光照(范围为 20-250 µE.m-2.s-1)和草甘膦(计算浓度为 EC10 和 EC50)对微藻生长特性的综合影响。观察发现,草甘膦照射会增加藻类对光的敏感性。在这两种藻类中,培养基中草甘膦浓度的增加导致光限制条件下生长光曲线的初始斜率角减小,生长光饱和值降低,光最适边界缩小,光抑制程度增加。结果表明,光和草甘膦的综合作用超过了每个因素作用的总和。在评估草甘膦进入水生生态系统的风险时,生态毒理学监测应考虑到这一事实。在太阳日照值较高的时期,水中草甘膦浓度的增加具有潜在的危险性,原因是藻类的光合作用活性降低,硅藻数量减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined effect of light and glyphosate herbicide on growth rate of marine diatom algae.

The effect of glyphosate herbicide at concentrations of 25, 100, 150 and 200 μg.L-1 on growth characteristics of diatoms C. caspia and T. weissflogii under accumulative growth conditions was investigated. Increasing herbicide concentration in the medium resulted in growth suppression of both species and decreased the final abundance of the cultures in the stationary growth phase. The calculated concentrations of herbicide EC10 and EC50 (10 and 90 μg.L-1 for C. caspia and 7 and 25 μg·L-1 for T. weissflogii, respectively) led to a 10 and 50% reduction in the abundance of the studied cultures relative to the control, are ecologically significant and correspond to the values recorded in aquatic areas. The combined effect of light (in the range of 20-250 µE.m-2.s-1) and glyphosate (calculated concentrations of EC10 and EC50) on the growth characteristics of microalgae was evaluated. An increase in algal sensitivity to light was observed with glyphosate exposure. In both species, the increase in the concentration of glyphosate in the medium led to a decrease in the initial angle of slope of the light curve of growth under conditions of light limitation, a reduction in the value of light saturation of growth, narrowing of the boundaries of the light optimum and an increase in the degree of light inhibition. It is shown that the effect of the combined action of light and glyphosate exceeds the sum of the effects of each factor. This fact should be taken into account in ecotoxicological monitoring when assessing the risks of glyphosate ingress into aquatic ecosystems. An increase in glyphosate concentration in water during periods with high values of solar insolation is potentially dangerous due to a decrease in the photosynthetic activity of algae and a reduction in diatom algae abundance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
期刊最新文献
Interactions between contaminants and the trophic ecology of two seabirds in a coastal lagoon of the Gulf of California. Mercury exposure in an endangered songbird: influence of marsh hydrology and evidence for early breeding impairment. Active biomonitoring of stream ecosystems: untargeted metabolomic and proteomic responses and free radical scavenging activities in mussels. Cascade reservoirs affect mercury concentrations in fish from Teles Pires river, Brazilian Amazon. Enzymatic activity and gene expression changes in the earthworms induced by co-exposure to beta-cypermethrin and triadimefon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1