基于垂直流免疫测定的多目标同时检测平台。

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of immunological methods Pub Date : 2024-05-15 DOI:10.1016/j.jim.2024.113690
Taek Yong , Dami Kim , Sanghyo Kim
{"title":"基于垂直流免疫测定的多目标同时检测平台。","authors":"Taek Yong ,&nbsp;Dami Kim ,&nbsp;Sanghyo Kim","doi":"10.1016/j.jim.2024.113690","DOIUrl":null,"url":null,"abstract":"<div><p>In general, vertical flow assay (VFA) has a disadvantage of requiring a complex analysis process that involves manually injecting various reagents (target analyte, washing buffer, detection conjugate, etc.) sequentially. However, in this study, we have developed an innovative paper-based VFA device that replaces the complex analysis process with one-step and enables the detection of multiple targets. The fabrication process of the multi-target detection VFA device is as follows: preparation and pre-treatment of the strip materials, design of strip cartridge, design of the multiple detection VFA device, optimization experiments for strip sample flow rates, determination of device analysis time, determination of device limit of detection (LOD), multiple target signal uniformity experiment, immunoglobulin G (IgG) and C-reactive protein (CRP) antigen-antibody multiple detection experiment, and data extraction and analysis method. The use of paper-based materials enables the device to be produced at cost-effective, and cartridge production allowed for uniform array formation. IgG and CRP are used to evaluate the performance of the device as common biomarkers. The device proposed in this study is currently under research. To validate multiple target detection capability of the VFA device proposed in this study, two types of antigens-antibodies (Human IgG and Human CRP) were employed. The detection limit is 0.15 μg/mL for IgG and 0.19 μg/mL for CRP in naked eye. Furthermore, it was confirmed that there is no cross-reactivity caused by the device structure through IgG and CRP antigens. In conclusion, the VFA device proposed in this study consists of a one-step analysis process, and it has been confirmed that it can detect multiple targets simultaneously.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":"530 ","pages":"Article 113690"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous multiple target detection platform based on vertical flow immunoassay\",\"authors\":\"Taek Yong ,&nbsp;Dami Kim ,&nbsp;Sanghyo Kim\",\"doi\":\"10.1016/j.jim.2024.113690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In general, vertical flow assay (VFA) has a disadvantage of requiring a complex analysis process that involves manually injecting various reagents (target analyte, washing buffer, detection conjugate, etc.) sequentially. However, in this study, we have developed an innovative paper-based VFA device that replaces the complex analysis process with one-step and enables the detection of multiple targets. The fabrication process of the multi-target detection VFA device is as follows: preparation and pre-treatment of the strip materials, design of strip cartridge, design of the multiple detection VFA device, optimization experiments for strip sample flow rates, determination of device analysis time, determination of device limit of detection (LOD), multiple target signal uniformity experiment, immunoglobulin G (IgG) and C-reactive protein (CRP) antigen-antibody multiple detection experiment, and data extraction and analysis method. The use of paper-based materials enables the device to be produced at cost-effective, and cartridge production allowed for uniform array formation. IgG and CRP are used to evaluate the performance of the device as common biomarkers. The device proposed in this study is currently under research. To validate multiple target detection capability of the VFA device proposed in this study, two types of antigens-antibodies (Human IgG and Human CRP) were employed. The detection limit is 0.15 μg/mL for IgG and 0.19 μg/mL for CRP in naked eye. Furthermore, it was confirmed that there is no cross-reactivity caused by the device structure through IgG and CRP antigens. In conclusion, the VFA device proposed in this study consists of a one-step analysis process, and it has been confirmed that it can detect multiple targets simultaneously.</p></div>\",\"PeriodicalId\":16000,\"journal\":{\"name\":\"Journal of immunological methods\",\"volume\":\"530 \",\"pages\":\"Article 113690\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022175924000759\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022175924000759","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

一般来说,垂直流式分析法(VFA)的缺点是分析过程复杂,需要人工依次注入各种试剂(目标分析物、洗涤缓冲液、检测共轭物等)。然而,在本研究中,我们开发了一种创新的纸质 VFA 设备,它只需一步即可取代复杂的分析过程,并能检测多个目标物。多靶点检测 VFA 装置的制作过程如下:条带材料的制备和预处理、条带盒的设计、多检测 VFA 装置的设计、条带样品流速的优化实验、装置分析时间的确定、装置检测限(LOD)的确定、多靶点信号均匀性实验、免疫球蛋白 G(IgG)和 C 反应蛋白(CRP)抗原-抗体多重检测实验以及数据提取和分析方法。纸质材料的使用使该装置的生产具有成本效益,筒式生产可使阵列形成均匀一致。IgG和CRP作为常见的生物标记物,用于评估该装置的性能。本研究提出的装置目前正在研究中。为了验证本研究提出的 VFA 设备的多目标检测能力,使用了两种抗原抗体(人 IgG 和人 CRP)。肉眼对 IgG 和 CRP 的检测限分别为 0.15 μg/mL 和 0.19 μg/mL。此外,还证实该装置的结构不会对 IgG 和 CRP 抗原产生交叉反应。总之,本研究提出的 VFA 设备由一步分析过程组成,并已证实它可以同时检测多个目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous multiple target detection platform based on vertical flow immunoassay

In general, vertical flow assay (VFA) has a disadvantage of requiring a complex analysis process that involves manually injecting various reagents (target analyte, washing buffer, detection conjugate, etc.) sequentially. However, in this study, we have developed an innovative paper-based VFA device that replaces the complex analysis process with one-step and enables the detection of multiple targets. The fabrication process of the multi-target detection VFA device is as follows: preparation and pre-treatment of the strip materials, design of strip cartridge, design of the multiple detection VFA device, optimization experiments for strip sample flow rates, determination of device analysis time, determination of device limit of detection (LOD), multiple target signal uniformity experiment, immunoglobulin G (IgG) and C-reactive protein (CRP) antigen-antibody multiple detection experiment, and data extraction and analysis method. The use of paper-based materials enables the device to be produced at cost-effective, and cartridge production allowed for uniform array formation. IgG and CRP are used to evaluate the performance of the device as common biomarkers. The device proposed in this study is currently under research. To validate multiple target detection capability of the VFA device proposed in this study, two types of antigens-antibodies (Human IgG and Human CRP) were employed. The detection limit is 0.15 μg/mL for IgG and 0.19 μg/mL for CRP in naked eye. Furthermore, it was confirmed that there is no cross-reactivity caused by the device structure through IgG and CRP antigens. In conclusion, the VFA device proposed in this study consists of a one-step analysis process, and it has been confirmed that it can detect multiple targets simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
120
审稿时长
3 months
期刊介绍: The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells. In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.
期刊最新文献
Complement function and activation in human serum and plasma collected in different blood collection tubes Challenges for complement functional assays in the clinical laboratory: From test validation to clinical interpretation. Overcoming cross-reactivity of antibodies against human lactate dehydrogenase Complete primer set for amplification and expression of full-length recombinant human monoclonal antibodies from single human B cells Functional immunological assays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1