Lisa Rita Magnaghi, Marta Guembe-Garcia, Giuseppina D G Santonoceta, Andrea Capucciati, Paolo Quadrelli, Carmelo Sgarlata, Giancarla Alberti, Raffaela Biesuz
{"title":"通过溶液中的化学计量辅助和多技术平衡分析,探索白蛋白-磺酞染料之间的相互作用。","authors":"Lisa Rita Magnaghi, Marta Guembe-Garcia, Giuseppina D G Santonoceta, Andrea Capucciati, Paolo Quadrelli, Carmelo Sgarlata, Giancarla Alberti, Raffaela Biesuz","doi":"10.1016/j.saa.2024.124421","DOIUrl":null,"url":null,"abstract":"<p><p>Albumin is undoubtedly the most studied protein thanks to its widespread diffusion and biochemistry; despite its binding ability towards different dyes, provoking dye's colour change, has been exploited for decades for quantification purposes, the joint effect of working pH, ionic strength, and dye's pK<sub>a</sub> still remains only sporadically discussed. In the present study, the interaction of Bovine Serum Albumin (BSA) with five dyes belonging to the sulfonephthalein group, Bromophenol Blue (BPB, pK<sub>a</sub> = 3.75), Bromocresol Green (BCG, pK<sub>a</sub> = 4.42), Chlorophenol Red (CPR, pK<sub>a</sub> = 5.74), Bromocresol Purple (BCP, pK<sub>a</sub> = 6.05) and Bromothymol Blue (BTB, pK<sub>a</sub> = 6.72), is investigated at four working pH values (3.5, 6.0, 7.5 and 9.0) and two ionic strength conditions by UV-Vis spectroscopy. Principal Component Analysis is then applied to rationalize dye behavior upon BSA addition at each pH value and to summarize the protein effect on dyes' spectral features, identifying three general behaviors. The most relevant systems are then submitted to further characterization involving a solution equilibria study aimed at determining conditional binding constants for the selected DSA-dye adducts and fluorescence, CD, and <sup>1</sup>H NMR spectroscopy to evaluate the binding effect on the species involved.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"317 ","pages":"124421"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring albumin-sulfonephthalein dyes interactions by a chemometric-assisted and multi-technique equilibria analysis in solution.\",\"authors\":\"Lisa Rita Magnaghi, Marta Guembe-Garcia, Giuseppina D G Santonoceta, Andrea Capucciati, Paolo Quadrelli, Carmelo Sgarlata, Giancarla Alberti, Raffaela Biesuz\",\"doi\":\"10.1016/j.saa.2024.124421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Albumin is undoubtedly the most studied protein thanks to its widespread diffusion and biochemistry; despite its binding ability towards different dyes, provoking dye's colour change, has been exploited for decades for quantification purposes, the joint effect of working pH, ionic strength, and dye's pK<sub>a</sub> still remains only sporadically discussed. In the present study, the interaction of Bovine Serum Albumin (BSA) with five dyes belonging to the sulfonephthalein group, Bromophenol Blue (BPB, pK<sub>a</sub> = 3.75), Bromocresol Green (BCG, pK<sub>a</sub> = 4.42), Chlorophenol Red (CPR, pK<sub>a</sub> = 5.74), Bromocresol Purple (BCP, pK<sub>a</sub> = 6.05) and Bromothymol Blue (BTB, pK<sub>a</sub> = 6.72), is investigated at four working pH values (3.5, 6.0, 7.5 and 9.0) and two ionic strength conditions by UV-Vis spectroscopy. Principal Component Analysis is then applied to rationalize dye behavior upon BSA addition at each pH value and to summarize the protein effect on dyes' spectral features, identifying three general behaviors. The most relevant systems are then submitted to further characterization involving a solution equilibria study aimed at determining conditional binding constants for the selected DSA-dye adducts and fluorescence, CD, and <sup>1</sup>H NMR spectroscopy to evaluate the binding effect on the species involved.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"317 \",\"pages\":\"124421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2024.124421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.124421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring albumin-sulfonephthalein dyes interactions by a chemometric-assisted and multi-technique equilibria analysis in solution.
Albumin is undoubtedly the most studied protein thanks to its widespread diffusion and biochemistry; despite its binding ability towards different dyes, provoking dye's colour change, has been exploited for decades for quantification purposes, the joint effect of working pH, ionic strength, and dye's pKa still remains only sporadically discussed. In the present study, the interaction of Bovine Serum Albumin (BSA) with five dyes belonging to the sulfonephthalein group, Bromophenol Blue (BPB, pKa = 3.75), Bromocresol Green (BCG, pKa = 4.42), Chlorophenol Red (CPR, pKa = 5.74), Bromocresol Purple (BCP, pKa = 6.05) and Bromothymol Blue (BTB, pKa = 6.72), is investigated at four working pH values (3.5, 6.0, 7.5 and 9.0) and two ionic strength conditions by UV-Vis spectroscopy. Principal Component Analysis is then applied to rationalize dye behavior upon BSA addition at each pH value and to summarize the protein effect on dyes' spectral features, identifying three general behaviors. The most relevant systems are then submitted to further characterization involving a solution equilibria study aimed at determining conditional binding constants for the selected DSA-dye adducts and fluorescence, CD, and 1H NMR spectroscopy to evaluate the binding effect on the species involved.