Bibhuranjan Nayak, Rojalin Debata, Kamali Kesavan, Ashutosh Rath, Lars H. Gronen, Sven Sindern, Thomas Wagner
{"title":"印度 Boula-Nuasahi 超基性复合体中生代铬铁矿体铬铁矿相的岩相学和化学:岩浆演化和热液蚀变的指标","authors":"Bibhuranjan Nayak, Rojalin Debata, Kamali Kesavan, Ashutosh Rath, Lars H. Gronen, Sven Sindern, Thomas Wagner","doi":"10.1007/s00710-024-00856-3","DOIUrl":null,"url":null,"abstract":"<div><p>Occurrence of “ferrian chromites” have earlier been reported from the Mesoarchean chromite deposits in the Boula-Nuasahi ultramafic complex (BNUC) of India. We have investigated the chromitite bodies in the southern part of the BNUC (i.e., Bangur area) with respect to the mode of occurrence, petrography, chemistry and structure of the chromite types. Although morphologically five varieties of chromite ore were found, chemically only three types of chromite can be distinguished based on EPMA analysis. These are: 1) Type I: magnesiochromite [high Cr<sub>2</sub>O<sub>3</sub> (57–65 wt.%), low iron (FeO: 13–17 wt.%), X<sup>Fe3+</sup>: < 0.1 apfu]; 2) Type II: ferrian chromite [moderate Cr<sub>2</sub>O<sub>3</sub> (43–53 wt.%), high iron (FeO: 27–30 wt.%), X<sup>Fe3+</sup>: 0.1 to 0.5 apfu]; and 3) Type III: ferrichromite [low Cr<sub>2</sub>O<sub>3</sub> (19–29 wt.%), very high iron (FeO: 55–67 wt.%), X<sup>Fe3+</sup>: 0.5 to 1.0 apfu]. Stoichiometrically calculated Fe<sub>2</sub>O<sub>3</sub> content is very high in some grains (maximum 47 wt.%). Geochemical discrimination diagrams for the Type I pristine magnesiochromite suggest a dominantly boninitic parental magma. Trace element data obtained from LA-ICP-MS indicate that the Type II chromite has formed from a more evolved magma and is richer in trace elements such as V, Mn, Co, Cu, Pb, Ga, and Nb whereas the Type III ferrichromite shows unusually high Ti and erratic high concentrations of trace elements. Alterations in chromite is noticed in two different thermal regimes: 1) 100–200 °C related to serpentinization of dunite and peridotite rocks where chromite grains show an unaltered core, an intermediate ferrian chromite rim and an outer magnetite rim; 2) 500–600 °C where the entire chromite grain is converted to ferrichromite which can be linked to later intrusion of the Bangur gabbro. While HR-TEM study reveals that all three chromite-types have face-centered cubic structure, Raman spectroscopy indicates that there is a gradual transition of the structural state from normal spinel structure (Type I) through Type II to a fully inverse spinel structure in case of ferrichromite.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrography and chemistry of chromite phases from the Mesoarchean chromitite bodies of the Boula-Nuasahi ultramafic complex, India: Indicators of magmatic evolution and hydrothermal alteration\",\"authors\":\"Bibhuranjan Nayak, Rojalin Debata, Kamali Kesavan, Ashutosh Rath, Lars H. Gronen, Sven Sindern, Thomas Wagner\",\"doi\":\"10.1007/s00710-024-00856-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Occurrence of “ferrian chromites” have earlier been reported from the Mesoarchean chromite deposits in the Boula-Nuasahi ultramafic complex (BNUC) of India. We have investigated the chromitite bodies in the southern part of the BNUC (i.e., Bangur area) with respect to the mode of occurrence, petrography, chemistry and structure of the chromite types. Although morphologically five varieties of chromite ore were found, chemically only three types of chromite can be distinguished based on EPMA analysis. These are: 1) Type I: magnesiochromite [high Cr<sub>2</sub>O<sub>3</sub> (57–65 wt.%), low iron (FeO: 13–17 wt.%), X<sup>Fe3+</sup>: < 0.1 apfu]; 2) Type II: ferrian chromite [moderate Cr<sub>2</sub>O<sub>3</sub> (43–53 wt.%), high iron (FeO: 27–30 wt.%), X<sup>Fe3+</sup>: 0.1 to 0.5 apfu]; and 3) Type III: ferrichromite [low Cr<sub>2</sub>O<sub>3</sub> (19–29 wt.%), very high iron (FeO: 55–67 wt.%), X<sup>Fe3+</sup>: 0.5 to 1.0 apfu]. Stoichiometrically calculated Fe<sub>2</sub>O<sub>3</sub> content is very high in some grains (maximum 47 wt.%). Geochemical discrimination diagrams for the Type I pristine magnesiochromite suggest a dominantly boninitic parental magma. Trace element data obtained from LA-ICP-MS indicate that the Type II chromite has formed from a more evolved magma and is richer in trace elements such as V, Mn, Co, Cu, Pb, Ga, and Nb whereas the Type III ferrichromite shows unusually high Ti and erratic high concentrations of trace elements. Alterations in chromite is noticed in two different thermal regimes: 1) 100–200 °C related to serpentinization of dunite and peridotite rocks where chromite grains show an unaltered core, an intermediate ferrian chromite rim and an outer magnetite rim; 2) 500–600 °C where the entire chromite grain is converted to ferrichromite which can be linked to later intrusion of the Bangur gabbro. While HR-TEM study reveals that all three chromite-types have face-centered cubic structure, Raman spectroscopy indicates that there is a gradual transition of the structural state from normal spinel structure (Type I) through Type II to a fully inverse spinel structure in case of ferrichromite.</p></div>\",\"PeriodicalId\":18547,\"journal\":{\"name\":\"Mineralogy and Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00710-024-00856-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-024-00856-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Petrography and chemistry of chromite phases from the Mesoarchean chromitite bodies of the Boula-Nuasahi ultramafic complex, India: Indicators of magmatic evolution and hydrothermal alteration
Occurrence of “ferrian chromites” have earlier been reported from the Mesoarchean chromite deposits in the Boula-Nuasahi ultramafic complex (BNUC) of India. We have investigated the chromitite bodies in the southern part of the BNUC (i.e., Bangur area) with respect to the mode of occurrence, petrography, chemistry and structure of the chromite types. Although morphologically five varieties of chromite ore were found, chemically only three types of chromite can be distinguished based on EPMA analysis. These are: 1) Type I: magnesiochromite [high Cr2O3 (57–65 wt.%), low iron (FeO: 13–17 wt.%), XFe3+: < 0.1 apfu]; 2) Type II: ferrian chromite [moderate Cr2O3 (43–53 wt.%), high iron (FeO: 27–30 wt.%), XFe3+: 0.1 to 0.5 apfu]; and 3) Type III: ferrichromite [low Cr2O3 (19–29 wt.%), very high iron (FeO: 55–67 wt.%), XFe3+: 0.5 to 1.0 apfu]. Stoichiometrically calculated Fe2O3 content is very high in some grains (maximum 47 wt.%). Geochemical discrimination diagrams for the Type I pristine magnesiochromite suggest a dominantly boninitic parental magma. Trace element data obtained from LA-ICP-MS indicate that the Type II chromite has formed from a more evolved magma and is richer in trace elements such as V, Mn, Co, Cu, Pb, Ga, and Nb whereas the Type III ferrichromite shows unusually high Ti and erratic high concentrations of trace elements. Alterations in chromite is noticed in two different thermal regimes: 1) 100–200 °C related to serpentinization of dunite and peridotite rocks where chromite grains show an unaltered core, an intermediate ferrian chromite rim and an outer magnetite rim; 2) 500–600 °C where the entire chromite grain is converted to ferrichromite which can be linked to later intrusion of the Bangur gabbro. While HR-TEM study reveals that all three chromite-types have face-centered cubic structure, Raman spectroscopy indicates that there is a gradual transition of the structural state from normal spinel structure (Type I) through Type II to a fully inverse spinel structure in case of ferrichromite.
期刊介绍:
Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered.
Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.