A. Brandi, A. Martilli, F. Salamanca, M. Georgescu
{"title":"复杂地形中的城市边界层流动:亚利桑那州凤凰城夏季炎热干燥季节的动态相互作用","authors":"A. Brandi, A. Martilli, F. Salamanca, M. Georgescu","doi":"10.1002/qj.4752","DOIUrl":null,"url":null,"abstract":"Anthropogenic modification of natural landscapes to urban environments impacts land–atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but considerably less attention has been given to impacts on regional wind flow. Here, we use a set of high‐resolution (1 km grid spacing) regional climate modeling simulations with the Weather Research and Forecasting model coupled to a multilayer urban canopy scheme to investigate the dynamical interaction between the urban boundary layer of the Phoenix metro (United States) area and the thermal circulation of the complex terrain it resides within. We conduct paired simulations for the extremely hot and dry summer of 2020, using a contemporary urban representation and a pre‐settlement landscape representation to examine the effect of the built environment on local to regional‐scale wind flow. Analysis of our simulation results shows that, during the summer of 2020, (a) the thermo‐topographical circulation dominates over both urban and rural areas for a majority of the diurnal cycle; (b) the built environment obstructs wind flow in the inertial sublayer during the late afternoon and the nighttime, whereas more intense daytime urban sensible heat flux dampens the urban‐roughness‐induced drag effect through a deeper urban boundary layer and vigorous mixing; (c) the Phoenix metro UHI does not result in a well‐developed and clearly discernible induced circulation as observed in other urban areas and described in the scientific literature; (d) shortly before dawn, the local UHI is able to affect the local thermo‐topographical circulation through flow intensity modulation that results in an ~10 km eastward shift of the center of mass convergence. Our results highlight the need for future research—both observational and simulation based—into urbanizing regions where multiscale flows are dominant.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban boundary‐layer flows in complex terrain: Dynamic interactions during a hot and dry summer season in Phoenix, Arizona\",\"authors\":\"A. Brandi, A. Martilli, F. Salamanca, M. Georgescu\",\"doi\":\"10.1002/qj.4752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anthropogenic modification of natural landscapes to urban environments impacts land–atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but considerably less attention has been given to impacts on regional wind flow. Here, we use a set of high‐resolution (1 km grid spacing) regional climate modeling simulations with the Weather Research and Forecasting model coupled to a multilayer urban canopy scheme to investigate the dynamical interaction between the urban boundary layer of the Phoenix metro (United States) area and the thermal circulation of the complex terrain it resides within. We conduct paired simulations for the extremely hot and dry summer of 2020, using a contemporary urban representation and a pre‐settlement landscape representation to examine the effect of the built environment on local to regional‐scale wind flow. Analysis of our simulation results shows that, during the summer of 2020, (a) the thermo‐topographical circulation dominates over both urban and rural areas for a majority of the diurnal cycle; (b) the built environment obstructs wind flow in the inertial sublayer during the late afternoon and the nighttime, whereas more intense daytime urban sensible heat flux dampens the urban‐roughness‐induced drag effect through a deeper urban boundary layer and vigorous mixing; (c) the Phoenix metro UHI does not result in a well‐developed and clearly discernible induced circulation as observed in other urban areas and described in the scientific literature; (d) shortly before dawn, the local UHI is able to affect the local thermo‐topographical circulation through flow intensity modulation that results in an ~10 km eastward shift of the center of mass convergence. Our results highlight the need for future research—both observational and simulation based—into urbanizing regions where multiscale flows are dominant.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4752\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4752","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Urban boundary‐layer flows in complex terrain: Dynamic interactions during a hot and dry summer season in Phoenix, Arizona
Anthropogenic modification of natural landscapes to urban environments impacts land–atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but considerably less attention has been given to impacts on regional wind flow. Here, we use a set of high‐resolution (1 km grid spacing) regional climate modeling simulations with the Weather Research and Forecasting model coupled to a multilayer urban canopy scheme to investigate the dynamical interaction between the urban boundary layer of the Phoenix metro (United States) area and the thermal circulation of the complex terrain it resides within. We conduct paired simulations for the extremely hot and dry summer of 2020, using a contemporary urban representation and a pre‐settlement landscape representation to examine the effect of the built environment on local to regional‐scale wind flow. Analysis of our simulation results shows that, during the summer of 2020, (a) the thermo‐topographical circulation dominates over both urban and rural areas for a majority of the diurnal cycle; (b) the built environment obstructs wind flow in the inertial sublayer during the late afternoon and the nighttime, whereas more intense daytime urban sensible heat flux dampens the urban‐roughness‐induced drag effect through a deeper urban boundary layer and vigorous mixing; (c) the Phoenix metro UHI does not result in a well‐developed and clearly discernible induced circulation as observed in other urban areas and described in the scientific literature; (d) shortly before dawn, the local UHI is able to affect the local thermo‐topographical circulation through flow intensity modulation that results in an ~10 km eastward shift of the center of mass convergence. Our results highlight the need for future research—both observational and simulation based—into urbanizing regions where multiscale flows are dominant.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.