Mina Rahmati, Mojtaba Zare Ebrahimabad, Alale Langari, Ali Najafi, Shohreh Taziki, Alireza Norouzi, M. Teimoorian, M. Khorasani, Saeed Mohammadi
{"title":"罗伐他汀干预慢性乙型肝炎(CHB)患者可通过芳基烃受体(AHR)扩增 CD14+ CD16- 经典单核细胞","authors":"Mina Rahmati, Mojtaba Zare Ebrahimabad, Alale Langari, Ali Najafi, Shohreh Taziki, Alireza Norouzi, M. Teimoorian, M. Khorasani, Saeed Mohammadi","doi":"10.3390/immuno4020011","DOIUrl":null,"url":null,"abstract":"Chronic hepatitis B (CHB) poses treatment challenges, with treatment response and disease outcome often determined by the immune response, particularly mononuclear phagocytes. Monocytes can differentiate into various subpopulations influenced by AHR. Statins, known for inflammation modulation, may impact monocyte function via AHR activation. This study explored rosuvastatin (RSV)’s effects on monocyte subtypes, inflammatory markers, and AHR in CHB patients. Fifteen CHB patients were randomly assigned to receive either 20 mg RSV or a placebo daily for three months. Flow cytometry assessed CD14+ CD16− (classical), CD14+ CD16+ (intermediate), and CD14dim CD16+ (patrolling) monocyte subtypes, along with AHR levels in each subset. ELISA quantified cytokines IL-6, IFN-γ, IL-12, IL-10, TNF-α, TGF-β, and IL-1β. RSV expanded CD14+ CD16− classical and reduced CD14+ CD16+ intermediate monocytes in CHB patients while increasing AHR+ cell percentages in all subsets. RSV treatment upregulated key AHR target genes (Cyp1a1, Cyp1b1, and ARNT), indicating robust AHR signaling activation. It also reduced pro-inflammatory cytokine levels (IL-6, IFNγ, IL-12, TNF-α) and elevated anti-inflammatory cytokines (IL-10, TGF-β). Thus, RSV may modulate the immune response by altering monocyte subtypes in CHB patients via AHR activation.","PeriodicalId":13326,"journal":{"name":"Immuno","volume":"50 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR)\",\"authors\":\"Mina Rahmati, Mojtaba Zare Ebrahimabad, Alale Langari, Ali Najafi, Shohreh Taziki, Alireza Norouzi, M. Teimoorian, M. Khorasani, Saeed Mohammadi\",\"doi\":\"10.3390/immuno4020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic hepatitis B (CHB) poses treatment challenges, with treatment response and disease outcome often determined by the immune response, particularly mononuclear phagocytes. Monocytes can differentiate into various subpopulations influenced by AHR. Statins, known for inflammation modulation, may impact monocyte function via AHR activation. This study explored rosuvastatin (RSV)’s effects on monocyte subtypes, inflammatory markers, and AHR in CHB patients. Fifteen CHB patients were randomly assigned to receive either 20 mg RSV or a placebo daily for three months. Flow cytometry assessed CD14+ CD16− (classical), CD14+ CD16+ (intermediate), and CD14dim CD16+ (patrolling) monocyte subtypes, along with AHR levels in each subset. ELISA quantified cytokines IL-6, IFN-γ, IL-12, IL-10, TNF-α, TGF-β, and IL-1β. RSV expanded CD14+ CD16− classical and reduced CD14+ CD16+ intermediate monocytes in CHB patients while increasing AHR+ cell percentages in all subsets. RSV treatment upregulated key AHR target genes (Cyp1a1, Cyp1b1, and ARNT), indicating robust AHR signaling activation. It also reduced pro-inflammatory cytokine levels (IL-6, IFNγ, IL-12, TNF-α) and elevated anti-inflammatory cytokines (IL-10, TGF-β). Thus, RSV may modulate the immune response by altering monocyte subtypes in CHB patients via AHR activation.\",\"PeriodicalId\":13326,\"journal\":{\"name\":\"Immuno\",\"volume\":\"50 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immuno\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/immuno4020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immuno","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/immuno4020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR)
Chronic hepatitis B (CHB) poses treatment challenges, with treatment response and disease outcome often determined by the immune response, particularly mononuclear phagocytes. Monocytes can differentiate into various subpopulations influenced by AHR. Statins, known for inflammation modulation, may impact monocyte function via AHR activation. This study explored rosuvastatin (RSV)’s effects on monocyte subtypes, inflammatory markers, and AHR in CHB patients. Fifteen CHB patients were randomly assigned to receive either 20 mg RSV or a placebo daily for three months. Flow cytometry assessed CD14+ CD16− (classical), CD14+ CD16+ (intermediate), and CD14dim CD16+ (patrolling) monocyte subtypes, along with AHR levels in each subset. ELISA quantified cytokines IL-6, IFN-γ, IL-12, IL-10, TNF-α, TGF-β, and IL-1β. RSV expanded CD14+ CD16− classical and reduced CD14+ CD16+ intermediate monocytes in CHB patients while increasing AHR+ cell percentages in all subsets. RSV treatment upregulated key AHR target genes (Cyp1a1, Cyp1b1, and ARNT), indicating robust AHR signaling activation. It also reduced pro-inflammatory cytokine levels (IL-6, IFNγ, IL-12, TNF-α) and elevated anti-inflammatory cytokines (IL-10, TGF-β). Thus, RSV may modulate the immune response by altering monocyte subtypes in CHB patients via AHR activation.