利用响应面方法优化磷钨酸胆碱与过硫酸盐的脱硫工艺

Catalysts Pub Date : 2024-05-16 DOI:10.3390/catal14050326
Yinke Zhang, Hang Xu
{"title":"利用响应面方法优化磷钨酸胆碱与过硫酸盐的脱硫工艺","authors":"Yinke Zhang, Hang Xu","doi":"10.3390/catal14050326","DOIUrl":null,"url":null,"abstract":"Using a simple acid-base neutralization method, a Ch-PW solid catalyst was synthesized by mixing choline hydroxide (ChOH) and phosphotungstic acid (HPW) at a 2:1 molar ratio in an aqueous solution. This catalyst was combined with a 20 wt.% potassium peroxymonosulfate (PMS) solution, using acetonitrile (ACN) as the extraction solvent to create an extraction catalytic oxidative desulfurization system. The optimal desulfurization conditions were determined through response surface methodology, targeting the highest desulfurization rate: 0.99 g of Ch-PW, 1.07 g of PMS, 2.5 g of extraction solvent, at a temperature of 50.48 °C. The predicted desulfurization rate was 90.79%, compared to an experimental rate of 93.64%, with a deviation of 3.04%. A quadratic model correlating the desulfurization rate with the four conditions was developed and validated using ANOVA, which also quantified the impact of each factor on the desulfurization rate: PMS > ACN > Ch-PW > temperature. GC-MS analysis identified the main oxidation product as DBTO2, and the mechanism of desulfurization in this system was further explored.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"11 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Desulfurization Process via Choline Phosphotungstate Coupled with Persulfate Using Response Surface Methodology\",\"authors\":\"Yinke Zhang, Hang Xu\",\"doi\":\"10.3390/catal14050326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a simple acid-base neutralization method, a Ch-PW solid catalyst was synthesized by mixing choline hydroxide (ChOH) and phosphotungstic acid (HPW) at a 2:1 molar ratio in an aqueous solution. This catalyst was combined with a 20 wt.% potassium peroxymonosulfate (PMS) solution, using acetonitrile (ACN) as the extraction solvent to create an extraction catalytic oxidative desulfurization system. The optimal desulfurization conditions were determined through response surface methodology, targeting the highest desulfurization rate: 0.99 g of Ch-PW, 1.07 g of PMS, 2.5 g of extraction solvent, at a temperature of 50.48 °C. The predicted desulfurization rate was 90.79%, compared to an experimental rate of 93.64%, with a deviation of 3.04%. A quadratic model correlating the desulfurization rate with the four conditions was developed and validated using ANOVA, which also quantified the impact of each factor on the desulfurization rate: PMS > ACN > Ch-PW > temperature. GC-MS analysis identified the main oxidation product as DBTO2, and the mechanism of desulfurization in this system was further explored.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14050326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14050326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用简单的酸碱中和法,在水溶液中以 2:1 的摩尔比混合氢氧化胆碱 (ChOH) 和磷钨酸 (HPW) 合成了 Ch-PW 固体催化剂。将这种催化剂与 20 wt.% 的过一硫酸钾 (PMS) 溶液结合,使用乙腈 (ACN) 作为萃取溶剂,创建了一个萃取催化氧化脱硫系统。通过响应面方法确定了最佳脱硫条件,目标是获得最高的脱硫率:0.99 克 Ch-PW、1.07 克 PMS、2.5 克萃取溶剂,温度为 50.48 °C。预测脱硫率为 90.79%,而实验脱硫率为 93.64%,偏差为 3.04%。利用方差分析建立并验证了脱硫率与四种条件相关的二次模型,并量化了各因素对脱硫率的影响:PMS > ACN > Ch-PW > 温度。GC-MS 分析确定主要氧化产物为 DBTO2,并进一步探讨了该体系的脱硫机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Desulfurization Process via Choline Phosphotungstate Coupled with Persulfate Using Response Surface Methodology
Using a simple acid-base neutralization method, a Ch-PW solid catalyst was synthesized by mixing choline hydroxide (ChOH) and phosphotungstic acid (HPW) at a 2:1 molar ratio in an aqueous solution. This catalyst was combined with a 20 wt.% potassium peroxymonosulfate (PMS) solution, using acetonitrile (ACN) as the extraction solvent to create an extraction catalytic oxidative desulfurization system. The optimal desulfurization conditions were determined through response surface methodology, targeting the highest desulfurization rate: 0.99 g of Ch-PW, 1.07 g of PMS, 2.5 g of extraction solvent, at a temperature of 50.48 °C. The predicted desulfurization rate was 90.79%, compared to an experimental rate of 93.64%, with a deviation of 3.04%. A quadratic model correlating the desulfurization rate with the four conditions was developed and validated using ANOVA, which also quantified the impact of each factor on the desulfurization rate: PMS > ACN > Ch-PW > temperature. GC-MS analysis identified the main oxidation product as DBTO2, and the mechanism of desulfurization in this system was further explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Facile Immersing Synthesis of Pt Single Atoms Supported on Sulfide for Bifunctional toward Seawater Electrolysis Construction of Cu2O-ZnO/Cellulose Composites for Enhancing the Photocatalytic Performance The Hydrodeoxygenation of Phenol over Ni-P/Hβ and Ni-P/Ce-β: Modifying the Effects in Dispersity and Acidity BiVO4-Based Photocatalysts for the Degradation of Antibiotics in Wastewater: Calcination Role after Solvothermal Synthesis Green Synthesis of Copper Oxide Nanoparticles from Waste Solar Panels Using Piper nigrum Fruit Extract and Their Antibacterial Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1