PIF 转录因子--多才多艺的植物表观基因组景观设计师

Moonia Ammari, Kashif Maseh, Mark Zander
{"title":"PIF 转录因子--多才多艺的植物表观基因组景观设计师","authors":"Moonia Ammari, Kashif Maseh, Mark Zander","doi":"10.3389/freae.2024.1404958","DOIUrl":null,"url":null,"abstract":"Plants are exquisitely responsive to their local light and temperature environment utilizing these environmental cues to modulate their developmental pathways and adjust growth patterns. This responsiveness is primarily achieved by the intricate interplay between the photoreceptor phyB (phytochrome B) and PIF (PHYTOCHROME INTERACTING FACTORs) transcription factors (TFs), forming a pivotal signaling nexus. phyB and PIFs co-associate in photobodies (PBs) and depending on environmental conditions, PIFs can dissociate from PBs to orchestrate gene expression. Until recently, the mechanisms governing epigenome modifications subsequent to PIF binding to target genes remained elusive. This mini review sheds light on the emerging role of PIFs in mediating epigenome reprogramming by recruiting chromatin regulators (CRs). The formation of numerous different PIF-CR complexes enables precise temporal and spatial control over the gene regulatory networks (GRNs) governing plant-environment interactions. We refer to PIFs as epigenome landscapers, as while they do not directly reprogram the epigenome, they act as critical sequence-specific recruitment platforms for CRs. Intriguingly, in the absence of PIFs, the efficacy of epigenome reprogramming is largely compromised in light and temperature-controlled processes. We have thoroughly examined the composition and function of known PIF-CR complexes and will explore also unanswered questions regarding the precise of locations PIF-mediated epigenome reprogramming within genes, nuclei, and plants.","PeriodicalId":101353,"journal":{"name":"Frontiers in epigenetics and epigenomics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PIF transcription factors-versatile plant epigenome landscapers\",\"authors\":\"Moonia Ammari, Kashif Maseh, Mark Zander\",\"doi\":\"10.3389/freae.2024.1404958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants are exquisitely responsive to their local light and temperature environment utilizing these environmental cues to modulate their developmental pathways and adjust growth patterns. This responsiveness is primarily achieved by the intricate interplay between the photoreceptor phyB (phytochrome B) and PIF (PHYTOCHROME INTERACTING FACTORs) transcription factors (TFs), forming a pivotal signaling nexus. phyB and PIFs co-associate in photobodies (PBs) and depending on environmental conditions, PIFs can dissociate from PBs to orchestrate gene expression. Until recently, the mechanisms governing epigenome modifications subsequent to PIF binding to target genes remained elusive. This mini review sheds light on the emerging role of PIFs in mediating epigenome reprogramming by recruiting chromatin regulators (CRs). The formation of numerous different PIF-CR complexes enables precise temporal and spatial control over the gene regulatory networks (GRNs) governing plant-environment interactions. We refer to PIFs as epigenome landscapers, as while they do not directly reprogram the epigenome, they act as critical sequence-specific recruitment platforms for CRs. Intriguingly, in the absence of PIFs, the efficacy of epigenome reprogramming is largely compromised in light and temperature-controlled processes. We have thoroughly examined the composition and function of known PIF-CR complexes and will explore also unanswered questions regarding the precise of locations PIF-mediated epigenome reprogramming within genes, nuclei, and plants.\",\"PeriodicalId\":101353,\"journal\":{\"name\":\"Frontiers in epigenetics and epigenomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in epigenetics and epigenomics\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3389/freae.2024.1404958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in epigenetics and epigenomics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3389/freae.2024.1404958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物对当地的光照和温度环境反应灵敏,利用这些环境线索来调节其发育途径并调整生长模式。这种反应能力主要是通过光感受器 phyB(植物色素 B)和 PIF(PHYTOCHROME INTERACTING FACTORs)转录因子(TFs)之间错综复杂的相互作用来实现的,它们形成了一个关键的信号纽带。phyB 和 PIFs 共同结合在光体(PBs)中,根据环境条件,PIFs 可以从 PBs 中分离出来,从而协调基因表达。直到最近,PIF 与目标基因结合后的表观基因组修饰机制仍然难以捉摸。这篇微型综述揭示了 PIF 通过招募染色质调控因子(CRs)在介导表观基因组重编程中新出现的作用。许多不同的 PIF-CR 复合物的形成能够对支配植物与环境相互作用的基因调控网络(GRN)进行精确的时间和空间控制。我们把 PIF 称为表观基因组的美化者,因为它们虽然不能直接重编程表观基因组,但却是 CRs 重要的序列特异性招募平台。耐人寻味的是,在缺乏PIFs的情况下,表观基因组重编程的功效在很大程度上会在光照和温度控制过程中受到影响。我们深入研究了已知的 PIF-CR 复合物的组成和功能,并将探讨 PIF 介导的表观基因组重编程在基因、细胞核和植物中的精确位置等未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIF transcription factors-versatile plant epigenome landscapers
Plants are exquisitely responsive to their local light and temperature environment utilizing these environmental cues to modulate their developmental pathways and adjust growth patterns. This responsiveness is primarily achieved by the intricate interplay between the photoreceptor phyB (phytochrome B) and PIF (PHYTOCHROME INTERACTING FACTORs) transcription factors (TFs), forming a pivotal signaling nexus. phyB and PIFs co-associate in photobodies (PBs) and depending on environmental conditions, PIFs can dissociate from PBs to orchestrate gene expression. Until recently, the mechanisms governing epigenome modifications subsequent to PIF binding to target genes remained elusive. This mini review sheds light on the emerging role of PIFs in mediating epigenome reprogramming by recruiting chromatin regulators (CRs). The formation of numerous different PIF-CR complexes enables precise temporal and spatial control over the gene regulatory networks (GRNs) governing plant-environment interactions. We refer to PIFs as epigenome landscapers, as while they do not directly reprogram the epigenome, they act as critical sequence-specific recruitment platforms for CRs. Intriguingly, in the absence of PIFs, the efficacy of epigenome reprogramming is largely compromised in light and temperature-controlled processes. We have thoroughly examined the composition and function of known PIF-CR complexes and will explore also unanswered questions regarding the precise of locations PIF-mediated epigenome reprogramming within genes, nuclei, and plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transcription factor network dynamics during the commitment to oncogene-induced senescence PIF transcription factors-versatile plant epigenome landscapers Enhanced glucose metabolism in Tet-deficient mouse embryonic stem cells SWI/SNF chromatin remodelers in prostate cancer progression Subcellular one carbon metabolism in cancer, aging and epigenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1