V. Sherlin Vinita, S. C. Jeyakumar, C. John Clement Singh, S. Sahaya Jude Dhas, Soumya Rajan, C. S. Biju, Sivakumar Aswathappa, Raju Suresh Kumar, Abdulrahman I. Almansour
{"title":"钴替代对用于自旋电子应用的 BaTiO3 纳米粒子中从二磁到软铁磁切换的影响","authors":"V. Sherlin Vinita, S. C. Jeyakumar, C. John Clement Singh, S. Sahaya Jude Dhas, Soumya Rajan, C. S. Biju, Sivakumar Aswathappa, Raju Suresh Kumar, Abdulrahman I. Almansour","doi":"10.1007/s10948-024-06750-5","DOIUrl":null,"url":null,"abstract":"<div><p>We present our findings on the room temperature (RT) soft ferromagnetism (FM) of the sol-gel-prepared Co-doped barium titanate (BaTiO<sub>3</sub>) nanoparticles with two distinct Co concentrations (0.25 mol% and 0.5 mol%), that is appropriate for spintronic applications as evidenced by experimental observations. X-ray diffraction investigation revealed that the produced samples, which had diameters less than 100 nm, belonged to the pseudo-cubic phase of the BaTiO<sub>3</sub> structure and did not exhibit any signs of the Co cluster or any other Co oxides. UV-visible absorption spectra demonstrate that the optical response is red shifted and the bandgap energy is lowered when Co is incorporated into the BaTiO<sub>3</sub> lattice. The inclusion of cobalt ions may have brought about a change in size or an increase in surface defects, as evidenced by the PL spectra, which show that the intensity of emission peaks changes as the dopant concentration increases. In the 0.25 mol% Co-doped BaTiO<sub>3</sub> sample, the FM behavior is clearly visible along with the paramagnetic (PM) phase at RT. Significantly, it becomes apparent that as the doping concentration is raised to 0.5 mol%, the saturation magnetization is reduced, and a pure phase of soft FM is obtained. This soft FM feature witnessed in 0.5 mol% doped BaTiO<sub>3</sub> with low coercivity (96.8 Oe) and low saturation magnetization (9.7 × 10<sup>−3</sup> emu/g) is likely due to oxygen vacancies and could set out as a promising magnetic material for possible spintronic applications.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"999 - 1010"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Co Substitution on the Diamagnetic to Soft Ferromagnetic Switching in BaTiO3 Nanoparticles for Spintronic Applications\",\"authors\":\"V. Sherlin Vinita, S. C. Jeyakumar, C. John Clement Singh, S. Sahaya Jude Dhas, Soumya Rajan, C. S. Biju, Sivakumar Aswathappa, Raju Suresh Kumar, Abdulrahman I. Almansour\",\"doi\":\"10.1007/s10948-024-06750-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present our findings on the room temperature (RT) soft ferromagnetism (FM) of the sol-gel-prepared Co-doped barium titanate (BaTiO<sub>3</sub>) nanoparticles with two distinct Co concentrations (0.25 mol% and 0.5 mol%), that is appropriate for spintronic applications as evidenced by experimental observations. X-ray diffraction investigation revealed that the produced samples, which had diameters less than 100 nm, belonged to the pseudo-cubic phase of the BaTiO<sub>3</sub> structure and did not exhibit any signs of the Co cluster or any other Co oxides. UV-visible absorption spectra demonstrate that the optical response is red shifted and the bandgap energy is lowered when Co is incorporated into the BaTiO<sub>3</sub> lattice. The inclusion of cobalt ions may have brought about a change in size or an increase in surface defects, as evidenced by the PL spectra, which show that the intensity of emission peaks changes as the dopant concentration increases. In the 0.25 mol% Co-doped BaTiO<sub>3</sub> sample, the FM behavior is clearly visible along with the paramagnetic (PM) phase at RT. Significantly, it becomes apparent that as the doping concentration is raised to 0.5 mol%, the saturation magnetization is reduced, and a pure phase of soft FM is obtained. This soft FM feature witnessed in 0.5 mol% doped BaTiO<sub>3</sub> with low coercivity (96.8 Oe) and low saturation magnetization (9.7 × 10<sup>−3</sup> emu/g) is likely due to oxygen vacancies and could set out as a promising magnetic material for possible spintronic applications.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"37 5-7\",\"pages\":\"999 - 1010\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-024-06750-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06750-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Influence of Co Substitution on the Diamagnetic to Soft Ferromagnetic Switching in BaTiO3 Nanoparticles for Spintronic Applications
We present our findings on the room temperature (RT) soft ferromagnetism (FM) of the sol-gel-prepared Co-doped barium titanate (BaTiO3) nanoparticles with two distinct Co concentrations (0.25 mol% and 0.5 mol%), that is appropriate for spintronic applications as evidenced by experimental observations. X-ray diffraction investigation revealed that the produced samples, which had diameters less than 100 nm, belonged to the pseudo-cubic phase of the BaTiO3 structure and did not exhibit any signs of the Co cluster or any other Co oxides. UV-visible absorption spectra demonstrate that the optical response is red shifted and the bandgap energy is lowered when Co is incorporated into the BaTiO3 lattice. The inclusion of cobalt ions may have brought about a change in size or an increase in surface defects, as evidenced by the PL spectra, which show that the intensity of emission peaks changes as the dopant concentration increases. In the 0.25 mol% Co-doped BaTiO3 sample, the FM behavior is clearly visible along with the paramagnetic (PM) phase at RT. Significantly, it becomes apparent that as the doping concentration is raised to 0.5 mol%, the saturation magnetization is reduced, and a pure phase of soft FM is obtained. This soft FM feature witnessed in 0.5 mol% doped BaTiO3 with low coercivity (96.8 Oe) and low saturation magnetization (9.7 × 10−3 emu/g) is likely due to oxygen vacancies and could set out as a promising magnetic material for possible spintronic applications.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.